精英家教网 > 高中数学 > 题目详情
11.已知|$\overrightarrow a|=1,|\overrightarrow b|=\sqrt{3},\overrightarrow a+\overrightarrow b=(\sqrt{3},1)$,则$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角为120°.

分析 由|$\overrightarrow a|=1,|\overrightarrow b|=\sqrt{3},\overrightarrow a+\overrightarrow b=(\sqrt{3},1)$,可得$|\overrightarrow{a}+\overrightarrow{b}|$=2=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$,化为$\overrightarrow{a}•\overrightarrow{b}$=0.可得$|\overrightarrow{a}-\overrightarrow{b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}}$=2.利用向量夹角公式即可得出.

解答 解:∵|$\overrightarrow a|=1,|\overrightarrow b|=\sqrt{3},\overrightarrow a+\overrightarrow b=(\sqrt{3},1)$,
∴$|\overrightarrow{a}+\overrightarrow{b}|$=$\sqrt{(\sqrt{3})^{2}+1}$=2=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}$,
化为$\overrightarrow{a}•\overrightarrow{b}$=0,
∴$|\overrightarrow{a}-\overrightarrow{b}|$=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}}$=2.
设$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角为θ,
则cosθ=$\frac{(\overrightarrow{a}+\overrightarrow{b})•(\overrightarrow{a}-\overrightarrow{b})}{|\overrightarrow{a}+\overrightarrow{b}||\overrightarrow{a}-\overrightarrow{b}|}$=$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{2×2}$=$\frac{1-3}{4}$=-$\frac{1}{2}$.
则$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角为120°.
故答案为:120°.

点评 本题考查了向量数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是(  )
A.$\frac{60}{91}$,$\frac{1}{2}$B.$\frac{1}{2}$,$\frac{60}{91}$C.$\frac{5}{18}$,$\frac{60}{91}$D.$\frac{91}{216}$,$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,a,b,c分别是角 A,B,C的对边,且bcosC+ccosB=2acosB.
(Ⅰ)求角B的大小;
(Ⅱ)若函数f(x)=sin(2x+B)+sin(2x-B)+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{1+x}$+$\sqrt{1-x}$,
(1)求函数f(x)的定义域和值域;
(2)设F(x)=$\frac{a}{2}$•[f2(x)-2]+f(x)(其中a为参数),求F(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若a,b是正实数,且a+b=2,则$\frac{1}{1+a}+\frac{1}{1+b}$的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\int_{-2}^m{\sqrt{-{x^2}-2x}}dx=\frac{π}{2}$,则m等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]∈D使f(x)在[a,b]上的值域为[a,b],那么就称y=f(x)为“成功函数”.若函数g(x)=loga(a2x+t)(a>0且a≠1)是定义域为R的“成功函数”,则t的取值范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点(2,1)到直线y=$\frac{1}{2}$x+1的距离是(  )
A.$\frac{2}{5}$B.$\frac{2}{5}\sqrt{5}$C.$\frac{6}{5}\sqrt{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式组$\left\{\begin{array}{l}2x<5-3x\\ \frac{x-1}{2}>a\end{array}\right.$的解集为∅,则实数a的取值范围为[0,+∞).

查看答案和解析>>

同步练习册答案