精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
设函数,其中
( I )若函数图象恒过定点P,且点P在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,
使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

(1)(2)时,上为增函数,
时,在上为增函数,在为减函数(3)如果存在满意条件的,则的取值范围是

解析试题分析:解:(Ⅰ)令,则,即函数的图象恒过定点

(Ⅱ),定义域为

=
=
,则
时,
此时上单调递增,
时,由

此时上为增函数,
为减函数,
综上当时,上为增函数,
时,在上为增函数,在为减函数,
(Ⅲ)由条件(Ⅰ)知
假设曲线上存在两点满足题意,则两点只能在轴两侧
,则
是以为直角顶点的直角三角形,

(1)当时,
此时方程①为,化简得.
此方程无解,满足条件的两点不存在.
(2)当时,,方程①为

,则
显然当上为增函数,
的值域为,即

综上所述,如果存在满意条件的,则的取值范围是.
考点:本试题考查了导数的运用。
点评:解决该试题的关键是利用图像过定点得到参数的值,进而求解得到解析式。同时利用导数的符号判定函数单调性,同时要注意对于含有参数的函数进行分类讨论得到结论。二对于不等式的证明,一般利用构造函数,运用导数求解最值,得到参数的范围,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)当时,求正整数k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
为实数,且
(1)求方程的解;
(2)若满足,试写出的等量关系(至少写出两个);
(3)在(2)的基础上,证明在这一关系中存在满足.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)求的值;
(2)当时,求函数的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数,若为定义在R上的奇函数,则(1)求实数的值;(2)求函数的值域;(3)求证:在R上为增函数;(4)若m为实数,解关于的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)若,求的单调区间;
(2)当时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知.
(I)求的单调增区间;
(II)若在定义域R内单调递增,求的取值范围;
(III)是否存在,使在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(Ⅰ) 当时,求函数的最大值;
(Ⅱ)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:

x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数在区间(0,2)上递减;函数在区间                     上递增.当             时,                 .
(2)证明:函数在区间(0,2)递减.
(3)思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

同步练习册答案