精英家教网 > 高中数学 > 题目详情
正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=-2px(p>0)上,则它的边长为(  )
分析:确定直线OA的倾斜角,据此求出直线OA的方程,与抛物线方程联立解出A点坐标,就可求出正三角形的边长.
解答:解:∵抛物线y2=2px关于x轴对称,
∴若正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,
∴A,B点关于x轴对称,
∴直线OA倾斜角为30°,斜率为
3
3

∴直线OA方程为y=
3
3
x
与抛物线方程联立,可得
1
3
x2
=2px
∴x=0或x=6p
∴A(6p,2
3
p),B(6p,-2
3
p),
∴|AB|=4
3
p

故选D.
点评:本题主要考查了抛物线的对称性,直线方程的点斜式,以及曲线交点的求法,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2x上,则这个正三角形的边长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,则这个正三角形的面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求焦点为(0,-6),(0,6)且经过点(2,-5)的双曲线方程;
(2)正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,求正三角形的边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个命题:
①平面内与一定点F和一条定直线l的距离相等的点的轨迹是抛物线;
②抛物线y=ax2的焦点到原点的距离是
|a|
4

③直线l与抛物线y2=2px(p>0)交于两点A(x1,y1),B(x2,y2),则|AB|=x1+x2+p;
④正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,则此正三角形的边长为4
3
p
.其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,求这个正三角形的边长.

查看答案和解析>>

同步练习册答案