精英家教网 > 高中数学 > 题目详情
设等差数列{an}的公差为d,点(an,bn)(n∈N*)在函数f(x)=2x的图象上.
(1)证明:数列{bn}为等比数列;
(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-
1
ln2
,求数列{anbn}2(n∈N*)的前n项和Sn
考点:数列与函数的综合,数列的函数特性,数列的求和
专题:等差数列与等比数列
分析:(1)利用等比数列的定义证明即可;
(2)先由(Ⅰ)求得an,bn,再利用错位相减求数列{anbn2}的前n项和Sn
解答: (1)证明:由已知得,bn=2an>0,
当n≥1时,
bn+1
bn
=
2an+1
2an
=2an+1-an=2d
∴数列{bn}为首项是2a1,公比为2d的等比数列;
(2)解:f′(x)=2xln2
∴函数f(x)的图象在点(a2,b2)处的切线方程为y-2a2=2a2ln2(x-a2),
∵在x轴上的截距为2-
1
ln2

∴a2-
1
ln2
=2-
1
ln2
,∴a2=2,
∴d=a2-a1=1,an=n,bn=2n,anbn2=n4n
∴Tn=1•4+2•42+3•43+…+(n-1)•4n-1+n•4n
4Tn=1•42+2•43+…+(n-1)•4n+n•4n+1
∴Tn-4Tn=4+42+…+4n-n•4n+1=
4n+1-4
3
-n•4n+1=
(1-3n)4n+1-4
3

∴Tn=
(3n-1)4n+1+4
9
点评:本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=ln(lnx)的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,如果输入的x,y∈R,那么输出的S的最大值为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(2α+π)
sin(α-
π
4
)
=
2
2
,则sinα+cosα的值为(  )
A、-
7
2
B、-
1
2
C、
1
2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
x-3
x-7
≤0},B={x|1<x<a},(其中a>1).
(1)若a=10,求A∪B,(∁RA)∩B;
(2)若A∩B≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是周期为2的偶函数,且在x∈[0,1]时,f(x)=x,若直线kx-y+k=0(k>0)与函数f(x)的图象有且仅有三个公共点,则k的取值范围是(  )
A、(0,
1
2
)
B、(0,
1
2
]
C、(
1
4
1
2
)
D、[
1
4
1
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2是椭圆
x2
2
+y2=1的左右焦点,过F1作倾斜角为45°的直线与椭圆相交于A,B两点.
(1)求△F2AB的周长
(2)求AB的长
(3)求△F2AB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形ABCD的对角线交于点P(2,0),边AB所在直线的方程为x-3y-6=0,点(-1,1)在边AD所在的直线上.
(1)求矩形的外接圆的方程;
(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的外接圆恒相交,并求出相交的弦长最短时的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为正且f(2-x)=f(2+x).求不等式f(2-
1
2
x2)<f(-x2+6x-7)的解集.

查看答案和解析>>

同步练习册答案