精英家教网 > 高中数学 > 题目详情

是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?

 

,证明详见解析.

【解析】

试题分析:先从特殊情形,等式必须成立,求出值,然后用数学归纳法加以证明,在这里必须指出的是:若题目没有讲要用数学归纳法证明,我们也应从数学归纳法考虑,因为等式的左边我们无法通过数列求和的知识解决,其次本题是与自然数有关的命题证明,我们应优先考虑数学归纳法,证明时必须严格遵循数学归纳法的证题步骤,做到规范化.

试题解析:若存在常数使等式成立,则将代入上式,有,即有 对于一切成立. 5分

数学归纳法证明如下:

证明如下:(1)当时,左边=,右边=,所以等式成立,

(2)假设)时等式成立,即

时,

也就是说,当时,等式成立,

综上所述,可知等式对任何都成立. 12分

考点:数学归纳法.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届湖北省襄阳市四校高二下学期期中联考理科数学试卷(解析版) 题型:选择题

已知三点满足,则的值 ( )

A、14 B、-14 C、7 D、-7

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省武汉市高三9月调考理科数学试卷(解析版) 题型:选择题

已知变量正相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省武汉市高三9月调考文科数学试卷(解析版) 题型:选择题

小王从甲地到乙地往返的时速分别为,其全程的平均时速为,则( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省武汉市高三9月调考文科数学试卷(解析版) 题型:选择题

设集合,则中元素的个数为( )

A.3 B.4 C.5 D.6

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省高二4月月考数学试卷(解析版) 题型:填空题

已知,则二项式展开式中含项的系数是___________.

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省高二4月月考数学试卷(解析版) 题型:选择题

若对于任意的实数,有,则的值为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省咸宁市高二下学期期末考试文科数学试卷(解析版) 题型:选择题

已知函数,若,且,使得.则实数的取值范围是(  )

A.(﹣,1) B.(1,

C.(1,) D.(﹣,1)∪(,+

 

查看答案和解析>>

科目:高中数学 来源:2015届湖北省高二5月月考文科数学试卷(解析版) 题型:填空题

不等式的解集为 .

 

查看答案和解析>>

同步练习册答案