精英家教网 > 高中数学 > 题目详情
(2012•温州一模)某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分、答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
23
,则该学生在面试时得分的期望值为
15
15
分.
分析:设该生在面试时的得分为X,由题设条件知X的可能取值为-15,0,15,30,分别求出P(X=-15),P(X=0),P(X=15),P(X=30),由此能求出该学生在面试时得分的期望值.
解答:解:设该生在面试时的得分为X,由题设条件知X的可能取值为-15,0,15,30,
P(X=-15)=
C
0
3
(
1
3
)3
=
1
27

P(X=0)=
C
1
3
(
1
3
)2(
2
3
)
=
2
9

P(X=15)=
C
2
3
(
1
3
)(
2
3
)2
=
4
9

P(X=30)=
C
3
3
(
2
3
)3
=
8
27

∴EX=-15×
1
27
+0×
2
9
+15×
4
9
+30×
8
27
=15.
∴该学生在面试时得分的期望值为15分.
故答案为:15.
点评:本题考查离散型随机变量的数学期望的求法,解题时要认真审题,注意n次独立重复试验中事件恰好发生k次的概率计算公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州一模)已知函数f(x)满足f(x)=2f(
1
x
)
,当x∈[1,3]时,f(x)=lnx,若在区间[
1
3
,3]
内,函数g(x)=f(x)-ax,有三个不同的零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在矩形ABCD中,AB=8,BC=4,E,F,G,H分别为四边的中点,且都在坐标轴上,设
OP
OF
CQ
CF
(λ≠0).
(Ⅰ)求直线EP与GQ的交点M的轨迹Γ的方程;
(Ⅱ)过圆x2+y2=r2(0<r<2)上一点N作圆的切线与轨迹Γ交于S,T两点,若
NS
NT
+r2=0
,试求出r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)如图,在△ABC中,AD⊥BC,垂足为D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)设E为AB的中点,已知△ABC的面积为15,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州一模)若圆x2+y2-4x+2my+m+6=0与y轴的两个交点A,B位于原点的同侧,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案