精英家教网 > 高中数学 > 题目详情
如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是PB、PC上的点,AE⊥PB,AF⊥PC,给出下列结论:
①AF⊥PB;
②EF⊥PB;
③AF⊥BC;
④AE⊥平面PBC.
其中正确结论的序号是______.
∵PA⊥圆O所在的平面α,BC?α,
∴PA⊥BC,
AB是圆O的直径,C是圆O上的一点,
∴BC⊥AC,
又PA∩AC=A,
∴BC⊥平面PAC,AF?平面PAC,
∴BC⊥AF,又AF⊥PC,PC∩BC=C,
∴AF⊥平面PBC,PB?平面PBC,
∴AF⊥PB,即①正确;
又AE⊥PB,同理可证PB⊥平面AFE,EF?平面AFE,
∴EF⊥PB,即②正确;
由BC⊥平面PAC,AF?平面PAC知,BC⊥AF,即③正确;
∵AF⊥平面PBC(前边已证),AE∩AF=A,
∴AE不与平面PBC垂直,故④错误,
综上所述,正确结论的序号是①②③.
故答案为:①②③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数最多为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列语句:
①二次函数是偶函数吗?
②2>2;
sin
π
2
=1

④x2-4x+4=0.
其中是命题的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.一个命题的逆命题为真,则它的逆否命题一定为真
B.若a+b>3,则a>1或b>2
C.命题“所有的矩形都是正方形”的否命题和命题的否定均为真命题
D.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题:
①直线y=2x在x,y轴上的截距相等;
②直线ax+2y=1与直线x+y=0平行的充要条件是a=2;
③世界上第一个把π计算到3.1415926<π<3.1415927的是中国人祖冲之;
④抛两枚均匀的骰子,恰好出现一奇一偶的概率为
1
4

⑤满足||PF1|-|PF2||=2a(a>0)的动点P的轨迹是双曲线;
⑥设P(x、y)是曲线
x2
25
+
y2
9
=1
上的点,F1(-4,0),F2(4,0),则必有|PF1|+|PF2|<10.
其中错误的命题序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=(
1
2
)x
的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1-|x|),则关于h(x)有下列命题:
①h(x)的图象关于原点对称;
②h(x)为偶函数;
③h(x)的最小值为0;
④h(x)在(0,1)上为减函数.
其中正确命题的序号为:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中真命题的个数是(  )
①若A,B,C,D是空间任意四点,则有
AB
+
BC
+
CD
+
DA
=
0

②在四面体ABCD中,若
AB
CD
=0,
AC
BD
=0
,则
AD
BC
=0

③在四面体ABCD中点,且满足
AB
AC
=0,
AC
AD
=0
AB
AD
=0
.则△BDC是锐角三角形
④对空间任意点O与不共线的三点A,B,C,若
OP
=x
OA
+y
OA
+z
OC
(其中x,y,z∈R且x+y+z=1),则P,A,B,C四点共面.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个命题中,真命题是(  )
A.?x∈R,有(x-
2
)2>0
B.?x∈Q,有x2>0
C.?x∈Z,使3x=128D.?x∈R,使3x2-4=6x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知命题p:?x∈R,x2+2ax+a≤0.若命题p是假命题,则实数a的取值范围是______.

查看答案和解析>>

同步练习册答案