精英家教网 > 高中数学 > 题目详情
如图,在正方体 
①求证:平面
②求证:与平面的交点的重心(三角形三条中线的交点)
 
见解析
(1)连接    由正方形
平面
平面    
     
平面   平面
  同理
   平面
(2)连接
均为正方体面对角线
为正三角形
由(1)知平面   的外心
由正三角形五心合一知
也为的重心。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在棱长AB=AD=2,AA1=3的长方体AC1中,点E是平面BCC1B1上动点,点F是CD的中点.
(Ⅰ)试确定E的位置,使D1E⊥平面AB1F;
(Ⅱ)求二面角B1—AF—B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形ABCD与矩形ABEF的公共边为AB,且平面ABCD平面ABEF,如图所示,FD, AD=1, EF=

(Ⅰ)证明:AE 平面FCB;
(Ⅱ)求异面直线BD与AE所成角的余弦值
(Ⅲ)若M是棱AB的中点,在线段FD上是否存在一点N,使得MN∥平面FCB?
证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

图4,四棱锥P—ABCD中,ABCD为矩形,△PAD为等腰直角三角形,

∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD-A1B1C1D1的底面是
梯形,AB∥CD,AD⊥DC,CD=2,DD1=AB=1,P、Q分别是CC1、C1D1的中点。点P到直线
AD1的距离为
⑴求证:AC∥平面BPQ
⑵求二面角B-PQ-D的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点P。如果将容器倒置,水面也恰好过点(图2)。有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半
B.将容器侧面水平放置时,水面也恰好过点
C.任意摆放该容器,当水面静止时,水面都恰好经过点
D.若往容器内再注入升水,则容器恰好能装满
其中真命题的代号是:             (写出所有真命题的代号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于四面体ABCD,下列命题正确的是         (写出所有正确命题的编号)。
①相对棱ABCD所在的直线异面;
②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;
③若分别作ABCABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知矩形ABCD,M,N分别是AD,BC的中点,且AM=AB,将矩形沿MN折成直二面角,若P点是线段DN上一动点,求P到BM距离的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若梯形的中位线被它的两条对角线三等分,则梯形的上底a与下底b(a<b)的比是(  ).
A.      B.         C.        D.

查看答案和解析>>

同步练习册答案