精英家教网 > 高中数学 > 题目详情
如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点P。如果将容器倒置,水面也恰好过点(图2)。有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半
B.将容器侧面水平放置时,水面也恰好过点
C.任意摆放该容器,当水面静止时,水面都恰好经过点
D.若往容器内再注入升水,则容器恰好能装满
其中真命题的代号是:             (写出所有真命题的代号)。
BD
设图(1)水的高度h2几何体的高为h1
图(2)中水的体积为b2h1-b2h2=b2(h1-h2),
所以b2h2=b2(h1-h2),所以h1=h2,故A错误,D正确.
对于B,当容器侧面水平放置时,P点在长方体中截面上,
又水占容器内空间的一半,所以水面也恰好经过P点,故B正确.
对于C,假设C正确,当水面与正四棱锥的一个侧面重合时,
经计算得水的体积为b2h2b2h2,矛盾,故C不正确.故选BD
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥中,底面是矩形,平面分别是的中点,
(1)求证:平面
(2)求证:平面⊥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
   如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BCADABADAD=2AB=2BC=2,OAD中点。

(Ⅰ)求证:PO⊥平面ABCD
(Ⅱ)求异面直线PDCD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体 
①求证:平面
②求证:与平面的交点的重心(三角形三条中线的交点)
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,
的中点.侧视图是直角梯形,俯视图是等腰直角
三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积;
(Ⅱ)求证:EM∥平面ABC
(Ⅲ) 试问在棱DC上是否存在点N,使NM⊥平面?若存在,确定点N的位置;
若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
在长方体中,,过三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为
(1)求棱的长;
(2)若的中点为,求异面直线所成角的大小(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)
如图(20)图,为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角的大小为,求:
(Ⅰ)点B到平面的距离;
(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体各面上的对角线所确定的平面个数是(    )
A.20B.14 C.12D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是三个不重合的平面,是不重合的直线,给出下列命题:
①若;②若;③若
;④若内的射影互相垂直,则,其中错误命题有      (    )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案