精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥中,底面是矩形,平面分别是的中点,
(1)求证:平面
(2)求证:平面⊥平面
同解析
如答图所示,⑴设的中点为,连结
的中点知
是矩形,∴ ,∴
的中点,∴
是平行四边形,
,而平面平面
平面
⑵∵,∴
又∵
,而,∴
, ∵,∴
,∴

∴平面平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

三棱锥P-ABC中,三侧棱PA、PB、PC两两相互垂直,三侧面面积分
别为S1、S2、S3,底面积为S,三侧面与底面分别成角α、β、γ,(1)求S(用S1、S2、S3表示);(2)求证:cos2α+cos2β+cos2γ=1;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四棱锥中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是面积为的菱形,为锐角,M为PB的中点。
(1)求证
(2)求二面角的大小
(3)求P到平面的距离

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,
(1)   证明:AD⊥平面PAB
(2)   求异面直线PCAD所成的角的大小;
(3)   求二面角P—BD—A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在直三棱柱中,. 已知G与E分别为 和的中点,D与F分别为线段上的动点(不包括端点). 若,则线段的长度的取值范围为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有升水时,水面恰好经过正四棱锥的顶点P。如果将容器倒置,水面也恰好过点(图2)。有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半
B.将容器侧面水平放置时,水面也恰好过点
C.任意摆放该容器,当水面静止时,水面都恰好经过点
D.若往容器内再注入升水,则容器恰好能装满
其中真命题的代号是:             (写出所有真命题的代号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于四面体ABCD,下列命题正确的是         (写出所有正确命题的编号)。
①相对棱ABCD所在的直线异面;
②由顶点A作四面体的高,其垂足是BCD的三条高线的交点;
③若分别作ABCABD的边AB上的高,则这两条高所在直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面内,三角形的面积为S,周长为C,则它的内切圆的半径.在空间中,三棱锥的体积为V,表面积为S,利用类比推理的方法,可得三棱锥的内切球(球面与三棱锥的各个面均相切)的半径R=______________________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若梯形的中位线被它的两条对角线三等分,则梯形的上底a与下底b(a<b)的比是(  ).
A.      B.         C.        D.

查看答案和解析>>

同步练习册答案