(本题满分14分)设
为非负实数,函数
.
(Ⅰ)当
时,求函数的单调区间;
(Ⅱ)讨论函数
的零点个数,并求出零点.
(Ⅰ)
的单调递增区间是
和
,单调递减区间是![]()
(Ⅱ)当
时,函数的零点为
;
当
时,函数有一个零点,且零点为
;
当
时,有两个零点
和
;
当
时,函数有三个零点
和
.
【解析】
试题分析:(Ⅰ)当
时,
, ……2分
①当
时,
,∴
在
上单调递增;
② 当
时,
,
∴
在
上单调递减,在
上单调递增;
综上所述,
的单调递增区间是
和
,单调递减区间是
. ……6分
(Ⅱ)(1)当
时,
,函数
的零点为
;
(2)当
时,
,
故当
时,
,二次函数对称轴
,
∴
在
上单调递增,
;
当
时,
,二次函数对称轴
,
∴
在
上单调递减,在
上单调递增;
∴
的极大值为
,
当
,即
时,函数
与
轴只有唯一交点,即唯一零点,
由
解之得
函数
的零点为
或
(舍去);
当
,即
时,函数
与
轴有两个交点,即两个零点,分别为
和
;
当
,即
时,函数
与
轴有三个交点,即有三个零点,
由
解得,
,
∴函数
的零点为
和
.
综上可得,当
时,函数的零点为
;
当
时,函数有一个零点,且零点为
;
当
时,有两个零点
和
;
当
时,函数有三个零点
和
.
……14分
考点:本小题主要考查函数单调性的判断和单调区间的求解,含参数的二次函数单调性的判断以及函数零点个数的判断,考查学生分类讨论思想的应用.
点评:判断函数的单调性可以用单调性的定义并结合常见函数的单调性,二此函数判断单调性要结合二次函数的图象,分类讨论时要做到不重不漏.
科目:高中数学 来源: 题型:
(本题满分14分)
设函数
,
。
(1)若
,过两点
和
的中点作
轴的垂线交曲线
于点
,求证:曲线
在点
处的切线
过点
;
(2)若
,当
时
恒成立,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2011——2012学年湖北省洪湖二中高三八月份月考试卷理科数学 题型:解答题
(本题满分14分)设椭圆
的左、右焦点分别为F1与
F2,直线
过椭圆的一个焦点F2且与椭圆交于P、Q两点,若
的周长为
。
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换
变成曲线
,直线
与曲线
相切
且与椭圆C交于不同的两点A、B,若
,求
面积的取值范围。(O为坐标原点)
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷三 题型:解答题
(本题满分14分)设M是由满足下列条件的函数
构成的集合:“①方
有实数根;②函数
的导数
满足
”
(I)证明:函数
是集合M中的元素;
(II)证明:函数
具有下面的性质:对于任意![]()
,都存在
,使得等式
成立。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
本题满分14分)
设函数
.
(1)若
,求函数
的极值;
(2)若
,试确定
的单调性;
(3)记
,且
在
上的最大值为M,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com