精英家教网 > 高中数学 > 题目详情
如图,边长为2的菱形中,,点分别是的中点,将分别沿折起,使两点重合于点.
                                          (1)求证:
(2)求二面角的余弦值.
(1)证明过程见试题解析;(2)二面角的余弦值余弦值为.

试题分析:(1)取的中点,先证明,即,即可证
(2)先找出二面角的平面角,再根据余弦定理即可求出二面角的余弦值.
试题解析:
(1)证明:取的中点,连结,因,则

,,
,                      3分
, 所以               4分
(2)由已知, ,
所以是二面角的平面角.                 5分
 .
.
所求角的余弦值为.                           8分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四棱锥,,,,,上一点,是平面的交点.

(1)求证:
(2)求证:
(3)求与面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面,底面为直角梯形,,

(1)求证:⊥平面
(2)求异面直线所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设l是一条直线,α,β,γ是不同的平面,则在下列命题中,假命题是________.
①如果α⊥β,那么α内一定存在直线平行于β
②如果α不垂直于β,那么α内一定不存在直线垂直于β
③如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
④如果α⊥β,l与α,β都相交,那么l与α,β所成的角互余

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不重合的平面,在下列条件中,可判定的是(  )
A.都与平面垂直
B.内不共线的三点到的距离相等
C.内的两条直线且
D.是两条异面直线且

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知l,m,n是三条不同的直线,α,β是不同的平面,则α⊥β的一个充分条件是(    )
A.lα,mβ,且l⊥m
B.lα,mβ,nβ,且l⊥m,l⊥n
C.mα,nβ,m//n,且l⊥m
D.lα,l//m,且m⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不同的直线, 是两个不同的平面,则下列命题中的真命题是 (   )
A.若B.若,则
C.若D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同直线,是两个不同的平面,下列命题正确的是(   )
A.B.,则
C.D.

查看答案和解析>>

同步练习册答案