精英家教网 > 高中数学 > 题目详情
如图,在直棱柱

(I)证明:
(II)求直线所成角的正弦值。
(I)见解析(II)
(1)因为平面,所以在平面内的投影;因为,由三垂线定理可知
(2)以A为原点,AB所在边为x轴,AD所在边为y轴,AA1所在边为z轴建立空间直角坐标系,则,所以
因为,所以,因为,所以,故,所以,设的法向量,则,令,所以的一个法向量;因为,所以所以直线所成角的正弦值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面,且底面为正方形,分别为的中点.

(1)求证:平面;
(2)求平面和平面的夹角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱的所有棱长都为4,D为的中点.

(1)求证:⊥平面
(2)求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,为边长为2的正三角形,底面ABCD为菱形,且平面PAB⊥平面ABCD,,E为PD点上一点,满足

(1)证明:平面ACE平面ABCD;
(2)求直线PD与平面ACE所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若P是平面外一点,A为平面内一点,为平面的一个法向量,则点P到平面的距离是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体中,

(1)求直线所成角;
(2)求直线所成角的正弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,是正三角形,四边形是矩形,且平面平面

(Ⅰ) 若点的中点,求证:平面
(II)若点为线段的中点,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l的方向向量为a=(1,-1,2),平面α的法向量为u=(-2,2,-4),则(  )
A.lαB.lαC.l?αD.lα斜交

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平行六面体中,若(  )
A.1B.C.D.

查看答案和解析>>

同步练习册答案