精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=2|x+1|+ax(x∈R),若函数f(x)存在两个零点,则a的取值范围是(  )
A.(0,1)B.(0,2)C.[0,2)D.[0,2]

分析 做出y=2|x+1|与y=-ax的图象,根据图象由两个交点得出a的范围.

解答 解:∵函数f(x)存在两个零点,
∴2|x+1|=-ax有两解,即y=2|x+1|与y=-ax的图象有两个交点.
做出y=2|x+1|与y=-ax的图象如图:

由图象可知,当y=-ax的斜率-2<-a<0时,y=-ax与y=2|x+1|有两个交点,
∴0<a<2.
故选:B.

点评 本题考查了零点的个数判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.计算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)-${\;}^{\frac{2}{3}}$+(1.5)-2+($\sqrt{2}$×$\root{4}{3}$)4
(2)若x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,试求$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{\sqrt{1-{e}^{x}}}$的定义域是(  )
A.(0,+∞)B.(-∞,0]C.(-∞,0)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\frac{2x-3}{5x+2}$的值域为(-∞,$\frac{2}{5}$)∪($\frac{2}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A(-1.0),B(1,0),若圆 (x-2)2+y2=r2上存在点P,使得∠APB=90°,则实数r的取值范围为(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题“?x∈R,x2+1<0”的否定是?x∈R,使得x2+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.x,y∈R,A={(x,y)|x2+y2=1},B={(x,y)|$\frac{x}{a}$-$\frac{y}{b}$=1,a>0,b>0},当A∩B只有1个元素时,a,b满足的关系式为(  )
A.$\frac{1}{a}$+$\frac{1}{b}$=1B.a2+b2=1C.$\frac{1}{a^2}$+$\frac{1}{b^2}$=1D.a+b=ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中,角A、B、C所对的边分别为a、b、c,sinA=sinB(sinc+cosc).
(1)求∠B;
(2)b=1,求S△ABC最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=a{x^2}+blnx,a,b∈R,f(1)=\frac{1}{2},f'(2)=1$.
(Ⅰ)求f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间$[{1,\sqrt{e}}]$上的值域.

查看答案和解析>>

同步练习册答案