精英家教网 > 高中数学 > 题目详情
13.命题“?x∈R,x2+1<0”的否定是?x∈R,使得x2+1≥0.

分析 利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题“?x∈R,x2+1<0”的否定是?x∈R,使得x2+1≥0.
故答案为:?x∈R,使得x2+1≥0.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求不等式a8x+25>a25x-26(a>0且a≠1)中的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知椭圆E的中心在坐标原点,离心率为$\frac{1}{2}$,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.△ABC中,已知a,b,c分别为角A,B,C的对边且∠A=60°,若${S_{△ABC}}=\frac{{3\sqrt{3}}}{2}$,且2sinB=3sinC,则△ABC的周长等于(  )
A.$5+\sqrt{7}$B.12C.10+$\sqrt{7}$D.5+$2\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2|x+1|+ax(x∈R),若函数f(x)存在两个零点,则a的取值范围是(  )
A.(0,1)B.(0,2)C.[0,2)D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)的值域是[-2,1],函数g(x)=3x2-18xf(m)+48f(n),且对任意的实数t,均有g(1+e-|t|)≥0,g(2+$\sqrt{4-{t}^{2}}$)≤0.
(1)求g(2)的值;
(2)求函数g(x)的解析式;
(3)若对任意的a∈[-2,6],恒有g(x)≥12x2-ax-42x+13.求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求与椭圆4x2+9y2=36有相同的焦距,且离心率为$\frac{\sqrt{5}}{5}$的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知平行四边形ABCD的对角线分别为AC,BD,且$\overrightarrow{AE}$=2$\overrightarrow{EC}$,点F是BD上靠近D的四等分点,则(  )
A.$\overrightarrow{FE}$=-$\frac{1}{12}$$\overrightarrow{AB}$-$\frac{5}{12}$$\overrightarrow{AD}$B.$\overrightarrow{FE}$=$\frac{1}{12}$$\overrightarrow{AB}$-$\frac{5}{12}$$\overrightarrow{AD}$C.$\overrightarrow{FE}$=$\frac{5}{12}$$\overrightarrow{AB}$-$\frac{1}{12}$$\overrightarrow{AD}$D.$\overrightarrow{FE}$=-$\frac{5}{12}$$\overrightarrow{AB}$-$\frac{1}{12}$$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y=ax2+bx+c通过点P(1,1),且在点Q(2,-1)处的切线平行于直线y=x,则抛物线方程为(  )
A.y=3x2-11x+9B.y=3x2+11x+9C.y=3x2-11x-9D.y=-3x2-11x+9

查看答案和解析>>

同步练习册答案