精英家教网 > 高中数学 > 题目详情
8、已知等差数列{an},定义fn(x)=a+a1x+…+anxn,n∈N*.若对任意的n∈N*,满足:y=fn(x)的图象经过点(1,n2).求数{an}的通式公式.
分析:由题意知fn(1)=n2,a+a1+a2+…+an=n2.Sn=n2-a,an=Sn-Sn-1=2n-1.所以an=2n-1 (n≥1).
解答:解:由题意得fn(1)=n2则a+a1+a2+…+an=n2
令 Sn=a1+a2+…+an=n2-a
n≥2 时     an=Sn-Sn-1=2n-1
又∵{an}为等差数列 a2=3    a1=3-2=1  且a1+a=1∴a=0
∴{an}通项公式为 an=2n-1 (n≥1)
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案