精英家教网 > 高中数学 > 题目详情
7.已知正方形ABCD的坐标分別是(-1,0),(0,1),(1,0),(0,-1),动点M满足:kMB•kMD=-$\frac{1}{2}$,则动点M所在的轨迹方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1(x≠0).

分析 利用直接法求出动点M的轨迹方程.

解答 解:设点M的坐标为(x,y),
∵动点M满足:kMB•kMD=-$\frac{1}{2}$,
∴$\frac{y+1}{x}•\frac{y-1}{x}=-\frac{1}{2}$.
 整理,得$\frac{{x}^{2}}{2}+{y}^{2}$=1(x≠0),
故答案为:$\frac{{x}^{2}}{2}+{y}^{2}$=1(x≠0).

点评 本题主要考查直接法求轨迹方程,以及椭圆定义的应用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有54种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.我国是世界上严重缺水的国家之一,城市缺水问题比较突处,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,假设采用抽样调查方式,获得了100户居民某年的月均用水量(单位:t),并用这些样本数据分成9画出频率分布直方图,其中第3、4、5、6组的高度分别是0.15、0.22、0.25、0.14,第7、8、9、组高度比为3:2:1,直方图如图:
根据频率分布直方图:(1)分别求出第7、8、9组的频率;
(2)求该市居民均用水量的众数、平均数;
(3)若让88%的居民用水量均不超标,用水标准定为多少,比较合适?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\sqrt{2}$,一条准线方程为x=$\frac{\sqrt{2}}{2}$,直线l与双曲线右支及双曲线的渐近线交于A、B、C、D四点,四个点的顺序如图所示.
(1)求该双曲线的方程;
(2)求证:|AB|=|CD|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.盒子中装有5个零件,其中有2个次品,现从中随机抽取2个,则恰有一个次品的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现代产品的销售离不开广告的促销活动,某公司代理一种国际品牌智能环境检测设备,其广告费用x(单位:万元)与年销售量t(单位:件)的统计数据如表所示:
广告费用x(万元) 3 4 5 6
 年销售量t(件) 25 30 4045
这里所给出的数据表示t对x呈线性回归关系$\stackrel{∧}{t}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.
[参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$].
(1)根据所给数据求出线性回归方程;
(2)将(1)中的$\stackrel{∧}{t}$近似地看作产品的实际年销售量t,若该产品的销售单价g(x)(单位:万元)与广告费x的近似关系是g(x)=$\left\{\begin{array}{l}{17-2x(x∈{N}^{*},且1≤x≤5)}\\{6-\frac{2}{x}(x∈{N}^{*},且6≤x≤10)}\end{array}\right.$试问当公司投入广告费用多少万元时,公司每年获得的销售收入最大,最大销售收入是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(1)f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]单调递增,求实数a的取值范围;
(2)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.点P在直径为2的球面上,过P作两两垂直的三条弦,若其中一条弦长是另一条弦长的2倍,则这三条弦长之和的最大值是(  )
A.$\frac{2\sqrt{70}}{5}$B.$\frac{3\sqrt{70}}{5}$C.$\frac{4\sqrt{15}}{5}$D.$\frac{6\sqrt{15}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$|=1,则|$\overrightarrow{c}$|的最大值M=$\sqrt{3}$+1.

查看答案和解析>>

同步练习册答案