精英家教网 > 高中数学 > 题目详情

 

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

【答案】

 【解析】考查函数导数运算、利用导数处理函数最值等知识。

    解:对函数求导得:,定义域为(0,2)

(1)  单调性的处理,通过导数的零点进行穿线判别符号完成。

当a=1时,令

为增区间;当为减函数。

(2)  区间上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定

待定量a的值。

有最大值,则必不为减函数,且>0,为单调递增区间。

最大值在右端点取到。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分高☆考♂资♀源*12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省原名校高三下学期第二次联考文科数学试卷(解析版) 题型:解答题

设函数

(1)当a=l时,求函数的极值;

(2)当a2时,讨论函数的单调性;

(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

实数m的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三上学期第二次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省高三教学质量监测理科数学卷 题型:解答题

(选修4—5:不等式选讲)设函数

(1)当a=-5时,求函数的定义域。

(2)若函数的定义域为R,求实数a的取值范围。

 

查看答案和解析>>

同步练习册答案