精英家教网 > 高中数学 > 题目详情
12.已知∠AOB在平面α内,P∉α,且∠POA=∠POB,PH⊥α于H,求证:0H平分∠A0B.

分析 作HC⊥OA于C,HD⊥OB于D,连结PC、PD,证明△POC≌△POD.可得PC=PD,从而HC=HD.即可证明结论.

解答 证明:作HC⊥OA于C,HD⊥OB于D,连结PC、PD,
则PC⊥OA,PD⊥OB.
在Rt△POC和Rt△POD中,∠POA=∠POB.
∴△POC≌△POD.∴PC=PD.
∵HC、HD分别是PC、PD在平面α内的射影,
∴HC=HD.
于是0H平分∠A0B.

点评 本题考查线面垂直,考查三角形全等的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线为$y=\sqrt{3}x$,右焦点F(4,0),左右顶点分别为A1,A2,P为双曲线上一点(不同于A1,A2),直线A1P,A2P分别与直线x=1交于M,N两点;
(1)求双曲线的方程;
(2)求证:$\overrightarrow{FM}•\overrightarrow{FN}$为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列关于互不相同的直线m,n,l和平面α,β的四个命题,其中正确命题的个数是(  )
(1)m?α,l∩α=A,点A∉m,则l与m不共面;
(2)l,m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l∥α,m∥β,α∥β,则l∥m;
(4)若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
(5)若l⊥α,l⊥n,则n∥α
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=3-x2,则方程f(x)=sin|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2-x+2,则${∫}_{0}^{1}$f(x)dx=(  )
A.$\frac{13}{6}$B.$\frac{11}{6}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求函数f(x)=x-0.2+2x0.5,的定义域为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.椭圆$\frac{x^2}{5}+\frac{y^2}{4}=1$的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知sin($\frac{π}{3}-α$)=$\frac{1}{2}$,求cos($α+\frac{π}{3}$)•sin($\frac{2π}{3}+α$)的值.

查看答案和解析>>

同步练习册答案