精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2
x+1x-1
+log2(x-1)+log2(p-x).
(1)当p=7时,求函数f(x)的定义域与值域;
(2)求函数f(x)的定义域与值域.
分析:(1)确定函数的定义域,利用对数的运算性质,化简函数,再确定内函数的值域,即可求得函数的值域;
(2)先确定函数的定义域,再利用对数的运算性质,化简函数,分类讨论,确定内函数的值域,即可求得函数的值域.
解答:解:(1)由题意,可得
x+1
x-1
>0
x-1>0
7-x>0
,∴1<x<7
又∵函数f(x)=log2
x+1
x-1
+log2(x-1)+log2(7-x)=log2(x+1)(7-x)=log2[-(x-3)2+16].
令g(x)=-(x-3)2+16,由于函数的定义域为{x|1<x<7},则g(7)<g(x)≤g(3),即0<g(x)≤16,所以函数f (x)的值域为(-∞,4]
(2)由题意,可得
x+1
x-1
>0
x-1>0
p-x>0
,∴x>1且x<p
∵函数的定义域不能为空集,故p>1,函数的定义域为(1,p).
函数f(x)=log2
x+1
x-1
+log2(x-1)+log2(p-x)=log2(x+1)(p-x)=log2[-x2+(p-1)x+p].
令t=-x2+(p-1)x+p=-(x-
p-1
2
)
2
+
(p+1)2
4
=g(x)
①当
p-1
2
<1
p>1
,即1<p<3时,t在(1,p)上单调减,g(p)<t<g(1),即0<t<2p-2,
∴f(x)<1+log2(p-1),函数f(x)的值域为(-∞,1+log2(p-1));
②当
1≤
p-1
2
≤p
p>1
,即p≥3时,g(p)<t≤g(
p-1
2
),即0<t≤
(p+1)2
4

∴f(x)≤2log2(p+1)-2,函数f(x)的值域为(-∞,2log2(p+1)-2].
综上:当1<p<3时,函数f(x)的值域为(-∞,log2(p-1));当p≥3时,函数f(x)的值域为(-∞,2log2(p+1)-2].
点评:本题考查导数函数,考查函数的值域,考查分类讨论的数学思想,解题的关键是确定函数的定义域,化简函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案