【题目】一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别是a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).若1≤a≤6,则sinC的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点为F(2,0),M为椭圆的上顶点,O为坐标原点,且△MOF是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1 , k2 , 且k1+k2=8,证明:直线AB过定点( ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合A={x|7﹣6x≤0},集合B={x|y=lg(x+2)},则(UA)∩B等于( )
A.(﹣2, )
B.( ,+∞)
C.[﹣2, )
D.(﹣2,﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线f(x)=ke﹣2x在点x=0处的切线与直线x﹣y﹣1=0垂直,若x1 , x2是函数g(x)=f(x)﹣|1nx|的两个零点,则( )
A.1<x1x2<
B.<x1x2<1
C.2<x1x2<2
D.<x1x2<2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形为矩形,平面, // ,, ,点点P在棱上.
(1)求证: ;
(2)若是的中点,求异面直线与所成角的余弦值;
(3)是否存在正实数,使得,且满足二面角的余弦值为,若存在,求出的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点, 为圆上一点,线段上一点满足,直线上一点,满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)为坐标原点, 是以为直径的圆,直线与相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com