精英家教网 > 高中数学 > 题目详情

【题目】已知圆,圆心为,定点为圆上一点,线段上一点满足,直线上一点,满足

)求点的轨迹的方程;

为坐标原点, 是以为直径的圆,直线相切,并与轨迹交于不同的两点且满足时,求面积的取值范围.

【答案】;(.

【解析】试题分析:

Ⅰ)由题意可得为线段中点, 为线段的中垂线,则 的轨迹是以为焦点,长轴长为的椭圆,据此可求得点的轨迹的方程为.

直线与圆相切,则联立直线方程与椭圆方程可得.满足题意时,设由韦达定理结合弦长公式可得ABO的面积换元令结合二次函数的性质可知,结合反比例函数的性质可得面积的取值范围为.

试题解析:

为线段中点

为线段的中垂线

∴由椭圆的定义可知的轨迹是以为焦点,长轴长为的椭圆,

设椭圆的标准方程为

∴点的轨迹的方程为.

∵圆与直线相切,

,即

,消去.

∵直线与椭圆交于两个不同点,

代入上式,可得

,解得.满足.

,则.

面积的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一锥体的三视图如图所示,则该棱锥的最长棱的棱长为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和最小值;

(2)若函数上的最小值为,求的值;

(3)若,且对任意恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为正四棱锥侧棱上异于 的一点,给出下列结论:

①侧面可以是正三角形.

②侧面可以是直角三角形.

③侧面上存在直线与平行.

④侧面上存在直线与垂直.

其中,所有正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张收费元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.

(1)写出飞机票价格元与旅行团人数之间的函数关系式;

(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足 ,则{an}的前50项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系,某重点高中数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学平均成绩不足120分的占 ,统计成绩后,得到如下的2×2列联表:

分数大于等于120分

分数不足120分

合计

周做题时间不少于15小时

4

19

周做题时间不足15小时

合计

45

(Ⅰ)请完成上面的2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)( i)按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是X,求X的分布列(概率用组合数算式表示);
( ii)若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的空间几何体中,四边形是边长为2的正方形, 平面 .

(1)求证:平面平面

(2)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案