精英家教网 > 高中数学 > 题目详情
精英家教网如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PA⊥平面ABCD,PA=AB=2,且E,F分别是BC,CD的中点.
(1)求证:平面PEF⊥平面PAC;
(2)求三棱锥P-EFC的体积.
分析:(1)由已知中四棱锥P-ABCD中,四边形ABCD是正方形,PA⊥平面ABCD,PA=AB=2,且E,F分别是BC,CD的中点我们易得到BD⊥AC,结合三角形的中位线定理,进一步可得到EF⊥AC,EF⊥PA,由线面垂直的判定定理,可得EF⊥平面PAC,再由面面垂直的定理即可得到平面PEF⊥平面PAC;
(2)由已知中PA⊥平面ABCD,我们易得棱锥的高为PA,底面为三角形EFC,分别求出棱锥的高及底面面积,代入棱锥体积公式,即可得到答案.
解答:证明:精英家教网(1)连接BD,因为ABCD是正方形,所以BD⊥AC,
因为E,F分别是BC,CD的中点,
所以EF∥BD,所以EF⊥AC,(4分)
因为PA⊥平面ABCD,EF?平面ABCD,
所以EF⊥PA,因为PA∩AC=A,
所以EF⊥平面PAC,
因为EF?平面PEF,所以平面PEF⊥平面PAC.(8分)
解:(2)VP-EFC=
1
3
S△EFC•PA=
1
3
×
1
2
×1×1×2=
1
3
.(14分)
点评:本题考查的知识点是平面与平面垂直的判定,棱锥的体积,其中(1)中熟练掌握面面垂直及线面垂直的判定定理是关系,(2)中求出棱锥的底面面积及高是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案