精英家教网 > 高中数学 > 题目详情
8.设x,y∈R+,且x+4y=40,则lgx+lgy的最大值为2.

分析 利用基本不等式的性质、对数的运算性质即可得出.

解答 解:∵x,y∈R+,且x+4y=40,∴40≥$2\sqrt{x•4y}$,解得xy≤100,当且仅当x=4y=20时取等号.
则lgx+lgy=lg(xy)≤2,因此其最大值为2.
故答案为:2.

点评 本题考查了基本不等式的性质、对数的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若一圆弧长等于它所在圆的内接正三角形的边长,则该弧所对的圆心角弧度数为(  )
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.方程$\frac{x|x|}{16}+\frac{y|y|}{9}=-1$的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:
①f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③y=f(|x|)的最大值为3;
④若函数g(x)和f(x)的图象关于原点对称,则y=g(x)由方程$\frac{y|y|}{16}+\frac{x|x|}{9}=1$确定.
其中所有正确的命题序号是(  )
A.③④B.②③C.①④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五点法”画出函数在一个周期内的图象;
(2)完整叙述函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的图象可以由函数f(x)=2sinx的图象经过两步怎样的变换得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
$\frac{1}{3}$x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y02020

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若0<a<1,b<-1,则函数f(x)=ax+b的图象不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.记关于x的不等于$\frac{x-3}{x+1}≤0$的解集为P,不等式|x-a|≤1的解集为Q.
(1)求出集合P;
(2)若P∩Q=Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若椭圆外存在一点P,满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则椭圆C的离心率e的取值范围是[$\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知p:|x|≤2,q:0≤x≤2,则p是q的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$,且z=$\frac{y}{x-a}$仅在点A(-1,$\frac{1}{2}$)处取得最大值,则实数a的取值范围为(  )
A.[-2,-1)B.(-∞,-1)C.(-2,-1)D.(-1,1)

查看答案和解析>>

同步练习册答案