精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五点法”画出函数在一个周期内的图象;
(2)完整叙述函数f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的图象可以由函数f(x)=2sinx的图象经过两步怎样的变换得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
$\frac{1}{3}$x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y02020

分析 (1)根据五点法,求出函数的五点对应的坐标,即可得到结论.
(2)由条件利用y=Asin(ωx+φ)的图象变换规律,可得结论.
(3)由2sin($\frac{1}{3}x-\frac{π}{6}$)≥0,可得:2kπ≤$\frac{1}{3}x-\frac{π}{6}$≤π+2kπ,k∈Z,进而解得:$\frac{π}{2}$+6kπ≤x≤$\frac{7π}{2}$+6kπ,k∈Z,
即可得解.

解答 解:(1)列表如下:

$\frac{1}{3}x-\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y020-20
描点连线如图所示.
…6分
(2)先把f(x)=2sinx的图象上所有的点向右平行移动$\frac{π}{6}$个单位长度,得到y=2sin(x-$\frac{π}{6}$)的图象,
再把所有点的横坐标伸长到原来的3倍(纵坐标不变),得到f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的图象…10分
(3)由f(x)≥0,可得:2sin($\frac{1}{3}x-\frac{π}{6}$)≥0,可得:2kπ≤$\frac{1}{3}x-\frac{π}{6}$≤π+2kπ,k∈Z,
解得:$\frac{π}{2}$+6kπ≤x≤$\frac{7π}{2}$+6kπ,k∈Z,
∴f(x)≥0成立的取值集合是{x|$\frac{π}{2}$+6kπ≤x≤$\frac{7π}{2}$+6kπ,k∈Z}…14分

点评 本题主要考查三角函数图象的做法,y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,利用五点法是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|0<x<3},B={x|(x+2)(x-1)>0},则A∩B等于(  )
A.(0,3)B.(1,3)C.(2,3)D.(-∞,-2)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别为a、b、c,且a=4,cosA=$\frac{3}{4}$,sinB=$\frac{5\sqrt{7}}{16}$,c>4.
(1)求b;
(2)求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,P为矩形ABCD所在平面外一点,矩形对角线交点为O,M为PB的中点,给出下面四个命题:①OM∥面PCD;②OM∥面PBC;③OM∥面PDA;④OM∥面PBA.其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设关于x的方程x2+(m-3)x+3-2m=0的两个实数根为α、β,求:(α-2)2+(β-2)2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$f(x)=x+\frac{b}{x}-3$,x∈[1,2]
(1)若b=1时,求f(x)的值域;
(2)若b≥2时,f(x)的最大值为M,最小值为m,且满足:M-m≥4,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y∈R+,且x+4y=40,则lgx+lgy的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知log5[log3(log2x)]=0,那么x${\;}^{-\frac{1}{3}}$=(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{6}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知幂函数y=f(x)的图象过点($\frac{1}{4}$,4),则f(2)=(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

同步练习册答案