精英家教网 > 高中数学 > 题目详情

已知数列{an},{bn}满足a1=2,a2=4,bn=an+1-an,bn+1=2bn+2.
(1)求证:数列{bn+2}是公比为2的等比数列; (2)求an

解:(1)由
∴{bn+2}是公比为2的等比数列.
(2)由(1)可知bn+2=4•2n-1=2n+1.∴bn=2n+1-2.则an+1-an=2n+1-2
令n=1,2,…n-1,则a2-a1=22-2,a3-a2=23-2,…an-an-1=2n-2,
各式相加得an=(2+22+23+…+2n)-2(n-1)=2n+1-2-2n+2=2n+1-2n.
所以an=2n+1-2n.
分析:(1)利用bn+1=2bn+2.构造数列{bn+2},通过等比数列的定义,证明数列是等比数列.
(2)利用(1)求出数列bn=2n+1-2.通过bn=an+1-an,推出数列an的递推关系式,利用累加法求出数列的通项公式即可.
点评:本题是中档题,考查数列的证明,数列的递推关系式的应用,通项公式的求法,考查计算能力,逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案