精英家教网 > 高中数学 > 题目详情
9.已知正方体的外接球的半径为3,则该正方体的棱长为2$\sqrt{3}$.

分析 球的直径就是正方体的对角线的长度,然后求出正方体的棱长.

解答 解:正方体外接球的半径R=3,正方体的对角线的长为6,棱长为a,则
$\sqrt{3}$a=6,∴a=2$\sqrt{3}$.
故答案为:2$\sqrt{3}$.

点评 本题考查球的内接正方体问题,解答的关键是利用球的直径就是正方体的对角线.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知集合C={$\frac{6}{1+x}$∈Z|x∈N},求C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在四面体ABCD,AB=CD,M,N分别是BC,AD的中点,若AB与CD所成的角的大小为60°,则MN和CD所成的角的大小为(  )
A.30°B.60°C.30°或60°D.15°或60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且AB=7,AC=BD=24,CD=25,求线段BD与平面α所成的角30°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x,x>0}\\{{2}^{-x},x≤0}\end{array}\right.$,则f(f(-4))+f(log2$\frac{1}{6}$)=(  )
A.$\frac{1}{2}$B.3C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若p:a<1,q:关于x的二次方程x2+(a+1)x+a-2=0的一个根大于零,另一根小于零,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,三棱柱ABC-A1B1C1的棱长都相等,侧棱垂直于底面,点D是棱AB的中点,则直线AC与平面A1DC所成角的正弦值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.己知$\vec a=({1,1})$,$\vec b=({x,4})$,若$({\vec a+\vec b})∥({2\vec a-\vec b})$,则实数x的值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\frac{2}{ta{n}^{2}α}}\\{y=\frac{2}{tanα}}\end{array}\right.$(α为参数,α≠$\frac{kπ}{2}$,k∈z),M是C1上的动点,P点满足$\overrightarrow{OP}$=$\frac{1}{2}$$\overrightarrow{OM}$,点P的轨迹为C2
(1)求曲线C1、C2的普通方程.
(2)以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐际方程是ρsin(θ-$\frac{π}{4}$)+$\sqrt{2}$=0,直线l与曲线C2相交于A、B,求△ABO的面积.

查看答案和解析>>

同步练习册答案