精英家教网 > 高中数学 > 题目详情
设函数f(x)=a2lnx-x2+ax,a>0.
(1)求f(x)的单调区间;
(2)求满足条件的所有实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(1)利用导数与函数单调性的关系求得函数的单调区间;
(2)e-1≤f(x)≤e2对x∈[1,e]恒成立,等价于
f(x)min≥e-1
f(x)maxe2
,由(1)的结论求得函数的最值,解不等式组解得即可.
解答: 解:(1)∵f(x)=a2lnx-x2+ax,a>0.
∴函数的定义域为(0,+∞),
∴f′(x)=
a2
x
-2x+a=
(a-x)(2x+a)
x

由于a>0,
即f(x)的增区间为(0,a),f(x)的减区间为(a,+∞).
(2)由题得,f(1)=a-1≥e-1,即a≥e,
由(1)知f(x)在[1,e]内单调递增
要使e-1≤f(x)≤e2对x∈[1,e]恒成立
只要
f(1)=a-1≥e-1
f(e)=a2-e2+ae≤e2
解得a=e.
点评:本题主要考查利用导数研究函数的单调性求函数的最值等问题,考查恒成立问题的转化求解能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若不等式组
x+y≥1
2y-x≤2
y≥
m
 x
表示的平面区域内存在点M(x0,y0),满足2x0+y0=6,则实数m的取值范围是(  )
A、[1,+∞)
B、[0,1]
C、(0,1)
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx-x+a+1
(1)若存在 x∈(0,+∞)使得f(x)≥0成立,求a的范围;
(2)求证:当x>1时,在(1)的条件下,
1
2
x2+ax-a>xlnx+
1
2
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5.求:
(Ⅰ)⊙O的半径;
(Ⅱ)sin∠BAP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(Ⅰ)求实数a的值;
(Ⅱ)若k∈Z,且f(x)>kx-k对任意x>1恒成立,求k的最大值;
(Ⅲ)若ak=2ln2+3ln3+…+klnk(k≥3,k∈N*),证明:
n
k=3
1
ak
<1(n≥k,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校甲、乙两位学生参加数学竞赛的培训,在培训期间,他们参加5次预赛,成绩记录如下:
82 82 79 95 87
95 75 80 90 85
(Ⅰ)用茎叶图表示这两组数据;
(Ⅱ)现要从甲、乙两人中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参赛更合适?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(a+1)lnx+ax2+
1
2
,a∈R.
(1)当a=-
1
3
时,求f(x)的最大值;
(2)讨论函数f(x)的单调性;
(3)如果对任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R函数f(x)=
ex
x2-ax+1
,其中a∈R.
(Ⅰ)求实数a的取值范围,并讨论当a≥0时,f(x)的单调性;
(Ⅱ)当a≥0时,证明:当x∈[0,1+a]时,f(x)≥x.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(1-2x)2014=a0+a1x+…+a2014x2014,则
a1
2
+
a2
22
+…+
a2014
22014
=
 

查看答案和解析>>

同步练习册答案