精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系xoy中,已知直线l:ax+y+2=0和点A(-3,0),若直线l上存在点M满足MA=2MO,则实数a的取值范围为a≤0,或a≥$\frac{4}{3}$.

分析 取M(x,-2-ax),直线l上存在点M满足MA=2MO,可得$\sqrt{(x+3)^{2}+(-2-ax)^{2}}$=2$\sqrt{{x}^{2}+(-2-ax)^{2}}$,化为:(a2+1)x2+(4a-2)x+1=0,此方程有实数根,可得△≥0,解出即可得出.

解答 解:取M(x,-2-ax),
∵直线l上存在点M满足MA=2MO,
∴$\sqrt{(x+3)^{2}+(-2-ax)^{2}}$=2$\sqrt{{x}^{2}+(-2-ax)^{2}}$,
化为:(a2+1)x2+(4a-2)x+1=0,此方程有实数根,
∴△=(4a-2)2-4(a2+1)≥0,
化为3a2-4a≥0,
解得a≤0,或a≥$\frac{4}{3}$.
故答案为:a≤0,或a≥$\frac{4}{3}$.

点评 本题考查了两点之间的距离公式、一元二次方程的实数解与判别式的关系、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.“a<0”是函数“函数f(x)=|x-a|+|x|在区间[0,+∞)上为增函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=ln(x2-2x-3)的单调递增区间是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在等差数列{an}中,a2=4,a4+a7=15.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{{a_n}-2}}$,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过点P(0,1),且与直线2x+3y-4=0垂直的直线方程为3x-2y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市为鼓励居民节约用水,拟实行阶梯水价,每人用水量中不超过w 立方米按2 元/立方米收费,超出w 立方米但不高于w+2 的部分按4 元/立方米收费,超出w+2 的部分按8 元/立方米收费,从该市随机调查了10000 位居民,获得了他们某月的用水量数据,整理得到如图所示频率分布直方图:
(1)如果w 为整数,那么根据此次调查,为使40%以上居民在该月的用水价格为2元/立方米,w 至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当w=2 时,估计该市居民该月的人均水费.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{x-1}{x}-lnx$
(1)求f(x)的单调区间;
(2)求函数f(x)在$[{\frac{1}{e},e}]$上的最大值和最小值;
(3)求证:$ln\frac{e^2}{x}≤\frac{1+x}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,若a1+a5+a9=$\frac{π}{2}$,则sin(a4+a6)=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=cosx(msinx-cosx)+sin2(π+x)(m>0)的最小值为-2.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且bcosA=2ccosA-acosB,求f(C)的取值范围.

查看答案和解析>>

同步练习册答案