精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD的三视图如图所示,其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形.
(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PA上的动点.问:不论点E在PA的任何位置上,是否都有BD⊥CE?请证明你的结论?
(3)求二面角D-PA-B的余弦值.
【答案】分析:(1)根据三视图的数据,结合三视图的特征直接求四棱锥P-ABCD的体积;
(2)若E是侧棱PA上的动点.不论点E在PA的任何位置上,都有BD⊥CE,说明BD⊥平面PAC,都有CE?平面PAC,即可.
(3)在平面DAP过点D作DF⊥PA于F,连接BF.说明∠DFB为二面角D-AP-B的平面角,在△DFB中,求二面角D-PA-B的余弦值.
解答:解:(1)由三视图可知,四棱锥P-ABCD的底面是边长为1的正方形,
侧棱PC⊥底面ABCD,且PC=2
S正方形ABCD•PC=.(4分)

(2)不论点E在何位置,都有BD⊥AE(5分)
证明:连接AC,∵ABCD是正方形,
∴BD⊥AC∵PC⊥底面ABCD,且BD?平面ABCD,∴BD⊥PC.(6分)
又∵AC∩PC=C,∴BD⊥平面PAC(7分)
∵不论点E在何位置,都有CE?平面PAC.
∵不论点E在何位置,都有BD⊥CE.(9分)

(3)在平面DAP过点D作DF⊥PA于F,
连接BF∵,AD=AB=1,
∴Rt△ADP≌Rt△ABP∴∠PAD=∠PAB,
又AF=AF,AB=AD
从而△ADF≌△ABF,∴BF⊥AP.∴∠DFB为二面角D-AP-B的平面角(12分)
在Rt△ACP中,
故在Rt△ADP中,
,在△DFB中,
由余弦定理得:
所以二面角D-PA-B的余弦值为.(14分)
点评:本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键,同时注意:空间想象能力,逻辑思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案