精英家教网 > 高中数学 > 题目详情
8.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知△ABC的面积为3$\sqrt{15}$,b-c=2,cosA=-$\frac{1}{4}$.
(Ⅰ)求a和sinC的值;
(Ⅱ)求cos(2A+$\frac{π}{6}$)的值.

分析 (Ⅰ)通过三角形的面积以及已知条件求出b,c,利用正弦定理求解sinC的值;
(Ⅱ)利用两角和的余弦函数化简cos(2A+$\frac{π}{6}$),然后直接求解即可.

解答 解:(Ⅰ)在三角形ABC中,由cosA=-$\frac{1}{4}$,可得sinA=$\frac{\sqrt{15}}{4}$,△ABC的面积为3$\sqrt{15}$,可得:$\frac{1}{2}bcsinA=3\sqrt{15}$,
可得bc=24,又b-c=2,解得b=6,c=4,由a2=b2+c2-2bccosA,可得a=8,
$\frac{a}{sinA}=\frac{c}{sinC}$,解得sinC=$\frac{\sqrt{15}}{8}$;
(Ⅱ)cos(2A+$\frac{π}{6}$)=cos2Acos$\frac{π}{6}$-sin2Asin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}(2{cos}^{2}A-1)-\frac{1}{2}×2sinAcosA$=$\frac{\sqrt{15}-7\sqrt{3}}{16}$.

点评 本题考查同角三角函数的基本关系式,二倍角公式,余弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设fn(x)=x+x2+…+xn-1,x≥0,n∈N,n≥2.
(Ⅰ)求fn′(2);
(Ⅱ)证明:fn(x)在(0,$\frac{2}{3}$)内有且仅有一个零点(记为an),且0<an-$\frac{1}{2}$<$\frac{1}{3}$($\frac{2}{3}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ln(1+x),g(x)=kx,(k∈R)
(1)证明:当x>0时,f(x)<x;
(2)证明:当k<1时,存在x0>0,使得对任意x∈(0,x0),恒有f(x)>g(x);
(3)确定k的所有可能取值,使得存在t>0,对任意的x∈(0,t),恒有|f(x)-g(x)|<x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁UB=(  )
A.{3}B.{2,5}C.{1,4,6}D.{2,3,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=(  )
A.[3,4)B.(2,3]C.(-1,2)D.(-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知{an}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=$\frac{2}{3}$,d=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{|2x+1|,x≤1}\\{{log}_{2}(x-1),x>1}\end{array}\right.$,若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则实数x1+x2+x3的取值范围为(1,8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知幂函数f(x)的图象经过点(2,$\sqrt{2}$),且f(2m+1)>f(m2+m-1),则m的取值范围是[$\frac{-1+\sqrt{5}}{2}$,2).

查看答案和解析>>

同步练习册答案