精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,矩形ABCD中,AB=4,点E为AB中点,若
DE
AC
,则|
DE
|=(  )
A、
5
2
B、2
3
C、3
D、2
2
分析:如图所示,建立直角坐标系.利用
DE
AC
,可得
DE
AC
=0,再利用向量模的计算公式即可得出.
解答:解:如图所示,建立直角坐标系.精英家教网
则B(4,0),E(2,0).
设D(0,m),(m>0),C(4,m).
DE
=(2,-m),
AC
=(4,m).
DE
AC

∴2×4-m2=0,
解得m2=8.
|
DE
|
=
22+8
=2
3

故选:B.
点评:本题考查了向量的垂直与数量积的关系、模的计算公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=Asin(ωx+φ)(A>0,ω>0,
π
2
<φ<π),x∈[-3,0]的图象,且图象的最高点为B(-1,3
2
);赛道的中间部分为
3
千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧
DE

(1)求ω,φ的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=θ,求当“矩形草坪”的面积最大时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,AC=1,AB=3,∠ACB=
π2
,P为AB的中点且△ABC与矩形BCDE所在的平面互相垂直,CD=2.
(1)求证:AD∥平面PCE;
(2)求三棱锥P-ACE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在△ABC中,AC=1,AB=3,∠ACB=
π2
,P为AB的中点且△ABC与矩形BCDE所在的平面互相垂直,CD=2.
(1)求证:AD∥平面PCE;
(2)求二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省南京市金陵中学高考数学预测试卷(2)(解析版) 题型:解答题

如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=Asin(ωx+φ)(A>0,ω>0,<φ<π),x∈[-3,0]的图象,且图象的最高点为B(-1,3);赛道的中间部分为千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧
(1)求ω,φ的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=θ,求当“矩形草坪”的面积最大时θ的值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省高三预测卷2数学 题型:解答题

(本小题满分14分)

如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=(A>0,>0,),x∈[-3,0]的图象,且图象的最高点为B(-1,);赛道的中间部分为千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧

 (1)求的值和∠DOE的值;

(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=,求当“矩形草坪”的面积最大时的值.

 

 

查看答案和解析>>

同步练习册答案