精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow a=(cosα,1)$,$\overrightarrow b=(2,-sinα)$,若$\overrightarrow a⊥\overrightarrow b$,则tan2α=$-\frac{4}{3}$.

分析 由$\overrightarrow a⊥\overrightarrow b$,可得$\overrightarrow{a}•\overrightarrow{b}$=0,化为tanα=2.再利用倍角公式即可得出.

解答 解:∵$\overrightarrow a⊥\overrightarrow b$,
∴$\overrightarrow{a}•\overrightarrow{b}$=2cosα-sinα=0,
化为tanα=2.
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×2}{1-{2}^{2}}$=-$\frac{4}{3}$.
故答案为:-$\frac{4}{3}$.

点评 本题考查了向量垂直与数量积的关系、倍角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设l是直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若α⊥β,l⊥α,则l⊥βD.若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={-2,0,2},B={-1,2},则A∩B=(  )
A.B.{2}C.{0}D.{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设公比为q(q>0)的等比数列{an}的前n项和Sn.若S2=3a2+2,S4=3a4+2,则q=(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)=ex-ae-x为奇函数,则$f(x-1)<e-\frac{1}{e}$的解集为(  )
A.(-∞,2)B.(一∞,1)C.(2,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足a1=1,an+1=an+2n,则a10=(  )
A.1 024B.1 023C.2 048D.2 047

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,则目标函数$z=\frac{2x+y+1}{x}$的取值范围是[3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知i为虚数单位,且$|1+ai|=\sqrt{5}$,则实数a的值为(  )
A.1B.2C.1或-1D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设m>1在约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+5y的最大值为4,则m的值为3,目标函数z=2x-y的最小值为$-\frac{1}{4}$.

查看答案和解析>>

同步练习册答案