精英家教网 > 高中数学 > 题目详情
6.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,则目标函数$z=\frac{2x+y+1}{x}$的取值范围是[3,5].

分析 作出不等式组对应的平面区域,利用分式函数的性质结合直线斜率的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域,
$z=\frac{2x+y+1}{x}$=2+$\frac{y+1}{x}$,
设k=$\frac{y+1}{x}$,则k的几何意义为区域内的点到定点D(0,-1)的斜率,
由图象可知BD的斜率最小,AD的斜率最大,
由$\left\{\begin{array}{l}{x+y=3}\\{2x-y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即B(2,1).
此时k=$\frac{1+1}{2}$=1,
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2)
k=$\frac{2+1}{1}=3$,
即1≤k≤3,
则3≤k+2≤5,
即3≤z≤5,
故答案为:[3,5];

点评 本题主要考查线性规划的应用,利用分式的性质结合直线斜率的几何意义是解决本题的关键.注意数形结合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则f($\frac{1}{k-1}$)与$\frac{1}{k-1}$大小关系一定是(  )
A.f($\frac{1}{k-1}$)≥$\frac{1}{k-1}$B.f($\frac{1}{k-1}$)≤$\frac{1}{k-1}$C.f($\frac{1}{k-1}$)>$\frac{1}{k-1}$D.f($\frac{1}{k-1}$)<$\frac{1}{k-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是定义在[0,+∞)上的单调递增函数,则满足f (2x-1)<f($\frac{1}{3}$)的x的取值范围是(  )
A.( $\frac{1}{3}$,$\frac{2}{3}$ )B.[$\frac{1}{3}$,$\frac{2}{3}$ )C.[$\frac{1}{2}$,$\frac{2}{3}$ )D.( $\frac{1}{2}$,$\frac{2}{3}$ )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a=(cosα,1)$,$\overrightarrow b=(2,-sinα)$,若$\overrightarrow a⊥\overrightarrow b$,则tan2α=$-\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知下列各组命题,其中p是q的充分必要条件的是(  )
A.p:m≤-2或m≥6;q:y=x2+mx+m+3有两个不同的零点
B.p:$\frac{f(-x)}{f(x)}$=1;q:y=f(x)是偶函数
C.p:cos α=cos β;q:tan α=tan β
D.p:A∩B=A;q:A⊆U,B⊆U,∁UB⊆∁UA

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知单位向量$\overrightarrow{e_1},\overrightarrow{e_2}$的夹角为$\frac{π}{3}$,设$\overrightarrow a=2\overrightarrow{e_1}+\overrightarrow{e_2}$,$\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,则$\overrightarrow a$与$\overrightarrow b$夹角的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数$f(x)=cos(2x-\frac{4π}{3})+2{cos^2}x$
(1)把函数f(x)的图象向右平移$\frac{π}{2}$个单位,再向下平移$\frac{3}{2}$个单位得到函数g(x)的图象,求函数g(x)在区间$[{-\frac{π}{4},\frac{π}{6}}]$上的最小值,并求出此时x的值;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c.若$f(B+C)=\frac{3}{2},b+c=2$.求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知0<α<β<$\frac{π}{2}$,sinα=$\frac{3}{5}$,cos(α-β)=$\frac{12}{13}$,求cosβ的值;
(2)在△ABC中,sinA-cosA=$\frac{2}{3}$,求cos2A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设椭圆的焦点为F1(-5,0),F2(5,0),椭圆上的点M与两个焦点所构成的三角形的周长为32,求椭圆的标准方程,并作出图形.

查看答案和解析>>

同步练习册答案