精英家教网 > 高中数学 > 题目详情
16.若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则f($\frac{1}{k-1}$)与$\frac{1}{k-1}$大小关系一定是(  )
A.f($\frac{1}{k-1}$)≥$\frac{1}{k-1}$B.f($\frac{1}{k-1}$)≤$\frac{1}{k-1}$C.f($\frac{1}{k-1}$)>$\frac{1}{k-1}$D.f($\frac{1}{k-1}$)<$\frac{1}{k-1}$

分析 根据f′(x)的定义,结合题意得出$\frac{f(x)-f(0)}{x}$>k>1,令x=$\frac{1}{k-1}$,即可求出f($\frac{1}{k-1}$)>$\frac{1}{k-1}$.

解答 解:∵f′(x)=$\underset{lim}{x→0}$$\frac{f(x)-f(0)}{x-0}$,
且f′(x)>k>1,
∴$\frac{f(x)-f(0)}{x}$>k>1,
即$\frac{f(x)+1}{x}$>k>1;
令x=$\frac{1}{k-1}$,得f($\frac{1}{k-1}$)+1>$\frac{1}{k-1}$×k=$\frac{k}{k-1}$,
即f($\frac{1}{k-1}$)>$\frac{k}{k-1}$-1=$\frac{1}{k-1}$;
所以,f($\frac{1}{k-1}$)>$\frac{1}{k-1}$.
故选:C.

点评 本题考查了导数的概念,不等式的化简与运算以及变量的代换问题与应用问题,是中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是幂函数,且在(0,+∞)上是减函数,求m的值;
(2)已知函数y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)的图象与两坐标轴均无交点,且其图象关于y轴对称.
①求出n的值;
②画出函数图象的示意图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x${\;}^{\frac{1}{2}}$+x-${\;}^{\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l是直线,α,β是两个不同的平面,则下列判断正确的是(  )
A.若l∥α,l∥β,则α∥βB.若α⊥β,l∥α,则l⊥βC.若α⊥β,l⊥α,则l⊥βD.若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的函数,且对任意x,y都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,且f(1)=$-\frac{2}{3}$.
(1)证明f(x)在(-∞,+∞)上的单调性.
(2)求f(x)在[-3,3]上的最大值和最小值.
(3)当x∈[-2,6]时,解不等式f(x2-3)>f(x)-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在用数学归纳法证明等式$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$时,当n=1左边所得的项是$\frac{1}{2}$;从”k→k+1”需增添的项是$\frac{1}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{1-i}{{{{({1+i})}^2}}}$=(  )
A.$\frac{1}{2}$+$\frac{i}{2}$B.1+$\frac{i}{2}$C.-$\frac{1}{2}$-$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={-2,0,2},B={-1,2},则A∩B=(  )
A.B.{2}C.{0}D.{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设变量x,y满足约束条件:$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,则目标函数$z=\frac{2x+y+1}{x}$的取值范围是[3,5].

查看答案和解析>>

同步练习册答案