分析 作出不等式组对应的平面区域,先根据目标函数z=x+5y的最大值为4,求出m的值,然后根据目标函数的几何意义进行求解即可.
解答
解:作出不等式组对应的平面区域如图:
作出直线z=x+5y=4,
则点A是最优解,
由$\left\{\begin{array}{l}{x+5y=4}\\{x+y=1}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{1}{4}}\\{y=\frac{3}{4}}\end{array}\right.$,即A($\frac{1}{4}$,$\frac{3}{4}$),
同时A也在直线y=mx上,
则$\frac{1}{4}$x=$\frac{3}{4}$,解得m=3,
由z=2x-y得y=2x-z,
平移直线y=2x-z,则由图象知当直线经过点A时直线的截距最大,此时z最小,
即z=2×$\frac{1}{4}$-$\frac{3}{4}$=$-\frac{1}{4}$,
故答案为:3,$-\frac{1}{4}$.
点评 本题主要考查线性规划的应用,作出不等式组对应的平面区域,利用目标函数的几何意义是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=2n-1 | B. | an=2n | C. | an=2${\;}^{\frac{n(n-1)}{2}}$ | D. | an=2${\;}^{\frac{{n}^{2}}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a}{r}[{(1+r)^8}-(1+r)]$ | B. | $\frac{a}{r}[{(1+r)^7}-(1+r)]$ | C. | a(1+r)7 | D. | a(1+r)8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com