13£®ÒÑÖªÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïß1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=4+tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Á¡ÊR£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ-4sin¦È=0£®
£¨1£©µ±¦Á=$\frac{3¦Ð}{4}$ʱ£¬ÇóÖ±ÏßlÓëÇúÏßCµÄ½»µãµÄ¼«×ø±ê£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬ÇÒ|AB|=2$\sqrt{3}$£¬ÇóÖ±ÏßlµÄÇãб½Ç£®

·ÖÎö £¨1£©ÔËÓü«×ø±êºÍÖ±½Ç×ø±êµÄ¹ØÏµ£¬»¯ÇúÏßCΪÆÕͨ·½³Ì£¬Çó³öÖ±Ïß·½³Ì£¬´úÈëÇúÏß·½³Ì£¬½â·½³Ì¿ÉµÃ½»µã×ø±ê£¬ÔÙת»¯Îª¼«×ø±ê£»
£¨2£©ÔËÓÃÏÒ³¤¹«Ê½ºÍµãµ½Ö±ÏߵľàÀ빫ʽ£¬½áºÏÖ±ÏßµÄбÂʹ«Ê½£¬¿ÉµÃÇãб½Ç£®

½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ-4sin¦È=0£¬¼´Îª£º
¦Ñ2=4¦Ñsin¦È£¬¼´ÓÐx2+y2-4y=0£¬
µ±¦Á=$\frac{3¦Ð}{4}$ʱ£¬Ö±ÏßµÄбÂÊΪ-1£¬Ö±ÏßlµÄ·½³ÌΪy-4=-x£¬
ÁªÁ¢Ö±Ïß·½³ÌºÍÔ²µÄ·½³Ì£¬¿ÉµÃ$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$£¬
¶ÔÓ¦µÄ¼«×ø±êΪ£¨4£¬$\frac{¦Ð}{2}$£©£¬£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£»
£¨2£©ÓÉ£¨1£©ÇúÏßC±íʾԲÐÄΪ£¨0£¬2£©£¬°ë¾¶Îª2µÄÔ²£¬
ÓÉÏÒ³¤¹«Ê½¿ÉµÃ2$\sqrt{3}$=2$\sqrt{4-{d}^{2}}$£¬
½âµÃd=1£¬
ÉèÖ±ÏßABµÄ·½³ÌΪy-4=kx£¬£¨k=tan¦Á£©£¬
¼´ÓÐd=$\frac{|0-2+4|}{\sqrt{1+{k}^{2}}}$=1£¬½âµÃk=¡À$\sqrt{3}$£¬
ÔòÖ±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{3}$»ò$\frac{2¦Ð}{3}$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬ÒÔ¼°ÏÒ³¤¹«Ê½µÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=lg£¨x2+mx+1£©£¬m¡ÊR£®Èôº¯Êýf£¨x£©µÄÖµÓòÊÇR£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÀûÓöþ·Ö·¨Çó$\root{3}{3}$µÄ½üËÆÖµ£¨¾«È·¶È0.1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÓÐÒÔÏÂÈý¸ö°¸Àý£º
°¸ÀýÒ»£º´ÓͬһÅú´ÎͬÀàÐͺŵÄ10´üÅ£ÄÌÖгéÈ¡3´ü¼ì²âÆäÈý¾ÛÇè°·º¬Á¿£»
°¸Àý¶þ£ºÄ³¹«Ë¾ÓÐÔ±¹¤800ÈË£ºÆäÖи߼¶Ö°³ÆµÄ160ÈË£¬Öм¶Ö°³ÆµÄ320ÈË£¬³õ¼¶Ö°³ÆµÄ200ÈË£¬ÆäÓàÈËÔ±120ÈË£®´ÓÖгéÈ¡ÈÝÁ¿Îª40µÄÑù±¾£¬Á˽â¸Ã¹«Ë¾Ö°¹¤ÊÕÈëÇé¿ö£»
°¸ÀýÈý£º´ÓijУ1000ÃûѧÉúÖгé10È˲μÓÖ÷ÌâΪ¡°Ñ§À׷棬Ê÷з硱µÄÖ¾Ô¸Õ߻£®
£¨1£©ÄãÈÏΪÕâЩ°¸ÀýÓ¦²ÉÓÃÔõÑùµÄ³éÑù·½Ê½½ÏΪºÏÊÊ£¿
£¨2£©ÔÚÄãʹÓõķֲã³éÑù°¸ÀýÖÐд³ö³éÑù¹ý³Ì£»
£¨3£©ÔÚÄãʹÓõÄϵͳ³éÑù°¸ÀýÖа´ÒÔϹ涨ȡµÃÑù±¾±àºÅ£ºÈç¹ûÔÚÆðʼ×éÖÐËæ»ú³éÈ¡µÄºÅÂëΪL£¨±àºÅ´Ó0¿ªÊ¼£©£¬ÄÇôµÚK×飨×éºÅK´Ó0¿ªÊ¼£¬K=0£¬1£¬2£¬¡­£¬9£©³éÈ¡µÄºÅÂëµÄ°ÙλÊýΪ×éºÅ£¬ºóÁ½Î»ÊýΪL+31KµÄºóÁ½Î»Êý£®ÈôL=18£¬ÊÔÇó³öK=3¼°K=8ʱËù³éÈ¡µÄÑù±¾±àºÅ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}-x+m\\-£¨m+4£©x+{m^2}-m-3\end{array}$$\begin{array}{l}£¬x¡Ý0\\;x£¼0\end{array}$£¬Èô¶ÔÈÎÒâµÄʵÊýx1£¬x2£¨x1¡Ùx2£©¶¼ÓÐ$\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}$£¼0£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-4£¬+¡Þ£©B£®£¨-¡Þ£¬-1£©¡È£¨3£¬+¡Þ£©C£®£¨-¡Þ£¬-1]¡È[3£¬+¡Þ£©D£®£¨-4£¬-1]¡È[3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýy=$lo{g}_{\frac{1}{2}}£¨{x}^{2}-5x+17£©$µÄÖµÓòΪ£¨-¡Þ£¬log${\;}_{\frac{1}{2}}$$\frac{43}{4}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÒÑÖªÕýËÄÀâÖùABCD-A1B1C1D1 µÄµ×Ãæ±ß³¤Îª3£¬²àÀⳤΪ4£¬Á¬½ÓA1B£¬¹ýA×÷AF¡ÍA1B´¹×ãΪF£¬ÇÒAFµÄÑÓ³¤Ïß½»B1BÓÚE£®
£¨1£©ÇóÖ¤£ºD1B¡ÍÆ½ÃæAEC£»
£¨2£©ÇóÈýÀâ×¶B-AECµÄÌå»ý£»
£¨3£©Çó¶þÃæ½ÇB-AE-CµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪÕý·½ÐΣ¬PD¡ÍÆ½ÃæABCD£¬MÊÇPCµÄÖе㣮
£¨1£©ÇóÖ¤£ºPA¡ÎÆ½ÃæBDM£»
£¨2£©ÈôPA=AD=2£¬ÇóÈýÀâ×¶M-BDCÓë¶àÃæÌåPDABMµÄÌå»ýÖ®±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Éè¶þ´Îº¯Êýf£¨x£©=ax2-2x+c£¨x¡ÊR£©µÄÖµÓòΪ[0£¬+¡Þ£©£¬Ôò$\frac{1}{c+1}$+$\frac{9}{a+9}$µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®2C£®$\sqrt{3}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸