精英家教网 > 高中数学 > 题目详情
17.在△ABC,a=2,(2+b)(sinA-sinB)=(c-b)sinC,求△ABC的面积的最大值为$\sqrt{3}$.

分析 已知等式利用正弦定理化简,把a=2代入整理得到关系式,利用余弦定理表示出cosA,将得出关系式代入求出cosA的值,进而确定出sinA的值,再利用基本不等式求出bc的最大值,即可确定出面积的最大值.

解答 解:把(2+b)(sinA-sinB)=(c-b)sinC,
利用正弦定理化简得:(2+b)(a-b)=c(c-b),
把a=2代入得:a2-b2=c2-bc,即b2+c2-a2=bc,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{3}}{2}$,
∵b2+c2=a2+bc=4+bc≥2bc,即bc≤4,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc≤$\frac{\sqrt{3}}{4}$×4=$\sqrt{3}$,
则△ABC的面积的最大值为$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.以下四个命题中:
①若命题“?x0∈R,使得x02+ax0+1≤0成立”为真命题,则a的取值范围为(-∞,-2]∪[2,+∞);
②设函数f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$),且其图象关于直线x=0对称,则y=f(x)的最小正周期为π,且在(0,$\frac{π}{2}$)上为增函数;
③已知p:x≥k,q:$\frac{3}{x+1}$<1,如果p是q的充分不必要条件,则实数k的取值范围是(2,+∞).
其中真命题的个数为(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{e}^{x}}{x{e}^{x}+1}$,当x>0时,不等式f(x)>$\frac{1}{a{x}^{2}+1}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知集合A={4,6},B={1,2},C={1,3},从这三个集合中各取一个元素构成空间直角坐标系中的点的坐标,则确定的不同点的个数42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.现有3位老师去参加学校组织的春季娱乐活动,该活动有甲、乙两个游戏可供选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏,且每个人参加游戏互不影响,设X表示参加甲游戏的人数,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某转弯路段为四分之一圆环,圆环道路外侧均匀栽种了10棵树(如图所示),小李在半径OA的延长线上一点C处观察到第四棵树(P点),第七棵树(Q点)与点C在同一条直线上,并测得AC=100米,则此弧形道路的大圆半径OA的长为(  )
A.100$\sqrt{3}$米B.100($\sqrt{3}$+1)米C.200米D.100($\sqrt{3}$+$\sqrt{2}$)米

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有下列四个命题,其中正确的命题有(  )
①A、B到α的距离相等,则AB∥α;
②△ABC的三个顶点到平面α的距离相等,则平面ABC∥α;
③夹在两个平行平面间的平行线段相等;
④垂直于同一个平面的两条直线互相平行.
A.①②B.②③C.D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=x|x-a|+a,(a≥0).
(1)若a=1,求函数f(x)的零点;
(2)若x∈[-1,1]时,|f(x)|≤1恒成立,求实数a的最大值.|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列几种说法:
①在△ABC中,若sinA>sinB,则A>B;
②等差数列{an}中,若a1,a3,a4成等比数列,则公比为$\frac{1}{2}$;
③已知x>0,y>0,且x+y=1,则$\frac{2}{x}$+$\frac{8}{y}$的最小值为18;
④在△ABC中,已知$\frac{a}{cosA}$=$\frac{b}{cosB}$=$\frac{c}{cosC}$,则∠A=60°;
⑤数列{an}的前n项和Sn=n2-2n+1,则数列{an}是等差数列.
正确的序号有①③④.

查看答案和解析>>

同步练习册答案