精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{{e}^{x}}{x{e}^{x}+1}$,当x>0时,不等式f(x)>$\frac{1}{a{x}^{2}+1}$恒成立,求a的取值范围.

分析 利用分离常数法,求出a的不等式,构造函数g(x),求出g(x)的取值范围即得a的取值范围

解答 解:当x>0时,不等式f(x)>$\frac{1}{a{x}^{2}+1}$恒成立,
即为当x>0时,x+$\frac{1}{{e}^{x}}$<ax2+1恒成立,
即a>$\frac{1}{x}$+$\frac{1}{{x}^{2}{e}^{x}}$-$\frac{1}{{x}^{2}}$,
设g(x)=$\frac{1}{x}$+$\frac{1}{{x}^{2}{e}^{x}}$-$\frac{1}{{x}^{2}}$,其中x>0,
∴g′(x)=-$\frac{1}{{x}^{2}}$-$\frac{x+2}{{x}^{3}{e}^{x}}$+$\frac{2}{{x}^{3}}$<0在x>0恒成立,
g(x)在(0,+∞)上是单调减函数;
∴0<g(x)<$\frac{1}{2}$,即a≥$\frac{1}{2}$;
∴实数a的取值范围是[$\frac{1}{2}$,+∞).

点评 本题考查了函数的性质与应用问题,也考查了利用导数判断函数的单调性,不等式恒成立问题注意转化为求函数的最值问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+…+f(2012)=(  )
A.335B.338C.1678D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列判断中正确的是(  )
A.命题“?a∈R,a2+1≥2a”的否定是:“?a∈R,a2+1≤2a”
B.?m∈R,使函数f(x)=(m-1)xm2-4m+1是幂函数,且在(0,+∞)上递减
C.命题“若a+$\frac{1}{a}$=2,则a=1”的逆否命题是假命题
D.已知直线l⊥平面α,直线m?平面β,则“α∥β”是“l⊥m”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设min(x1,x2,…,xn)表示x1,x2,…,xn中最小的一个,max(x1,x2,…,xn)表示x1,x2,…,xn中最大的一个,给出下列命题:
①min{x2,x-1}=x-1;
②设a,b∈R,a≠0,|a|≠|b|,有min{|a|-|b|,$\frac{{|{a^2}-{b^2}|}}{|a|}$}=|a|-|b|;
③设a,b∈R+,有$min\{a,\frac{2b}{{{a^2}+{b^2}}}\}$的最大值为1;
④a,b∈R,max{|a+b|,|a-b|,|2014-b|}≥1007
其中所有正确命题的序号有(  )
A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一个工厂为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:
零件数 1020 30 40 50 60 70 80 90 100 
 加工时间 62 6875 81 89 95 102 108 115 122 
(1)画出散点图;
(2)推出是正相关还是负相关;
(3)关于加工零件的个数与加工时间,你能得出什么结论?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.3210的正约数有16个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某长方体的三视图如图,长度为$\sqrt{10}$的体对角线在正视图中的长度为$\sqrt{6}$,在侧视图中的长度为$\sqrt{5}$,则该长方体的表面积为3+4$\sqrt{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC,a=2,(2+b)(sinA-sinB)=(c-b)sinC,求△ABC的面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=ln(x+1)-$\frac{ax}{x+a}$(a>1),讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案