精英家教网 > 高中数学 > 题目详情
12.已知数列{an}各项为正,Sn为其前n项和,满an+1=2Sn-1且a1=1,则an=$\left\{\begin{array}{l}{1,n=1}\\{{3}^{n-2},n≥2}\end{array}\right.$.

分析 an+1=2Sn-1且a1=1,n≥2时,可得:an+1-an=2an,即an+1=3an,n=1时,a2=1.数列{an}从第二项起是等比数列,公比为3.即可得出.

解答 解:∵an+1=2Sn-1且a1=1,∴n≥2时,an=2Sn-1-1,可得:an+1-an=2an,即an+1=3an
n=1时,a2=2a1-1=1.
∴数列{an}从第二项起是等比数列,公比为3.
∴an=1×3n-2
可得:an=$\left\{\begin{array}{l}{1,n=1}\\{{3}^{n-2},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{1,n=1}\\{{3}^{n-2},n≥2}\end{array}\right.$.

点评 本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=($\frac{1}{x}$)${\;}^{3+2m-{m}^{2}}$(m∈Z)在(0,+∞)是单调减函数,且为偶函数.
(Ⅰ)求f(x)的解析式;
(Ⅱ)讨论F(x)=af(x)+(a-2)x5.f(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={第一象限角},B={锐角},C={小于90°的角},则下面关系式中正确的是(  )
A.A=B=CB.A?CC.A∩C=BD.B∪C⊆C

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.椭圆$\frac{x^2}{{4{a^{\;}}}}+\frac{y^2}{{{a^2}+1}}=1(a>0)$的焦点在x轴上,则它的离心率的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若g(x)=-2x2+5x-7,则g(-1)=-14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,现有一个计时沙漏,开始时盛满沙子,沙子从上部均匀下漏,经过5分钟漏完,H是该沙漏中沙面下降的高度,则H与下漏时间t(分)的函数关系用图象表示应该是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,四边形ABCD是边长为2的菱形,且∠BAD=60°,四边形ABEF是正方形,平面ABCD⊥平面ABEF,点G,H分别为边CD,DA的中点,点M是线段BE上一动点.
(1)求证:GH⊥DM;
(2)求三棱锥D-MGH的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^{x-3}},x≤2\\{log_a}x,x>2\end{array}\right.$(a>0,且a≠1)的值域是[2,+∞),则实数a的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案