精英家教网 > 高中数学 > 题目详情
4.如图,现有一个计时沙漏,开始时盛满沙子,沙子从上部均匀下漏,经过5分钟漏完,H是该沙漏中沙面下降的高度,则H与下漏时间t(分)的函数关系用图象表示应该是(  )
A.B.C.D.

分析 利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取$\frac{1}{2}$分钟时,液面下降高度与漏斗高度$\frac{1}{2}$的比较.

解答 解:利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取1.5分钟时,液面下降高度与漏斗高度的$\frac{1}{2}$比较.
由于所给的圆锥形漏斗上口大于下口,当时间取$\frac{1}{2}$t时,漏斗中液面下落的高度不会达到漏斗高度的$\frac{1}{2}$,对比四个选项的图象可得结果.
故选:B

点评 本题考查函数图象,还可以正面分析得出结论:圆柱液面上升速度是常量,则V(这里的V是漏斗中剩下液体的体积)与t成正比(一次项),根据圆锥体积公式V=$\frac{1}{3}$πr2h,可以得出H=at2+bt中,a为正数,另外,t与r成反比,可以得出H=at2+bt中,b为正数.所以选择第二个答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.方程($\frac{1}{3}$)x=|log3x|的解的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆方程$\frac{x^2}{2}+{y^2}=1$右焦点F、斜率为k的直线l交椭圆于P、Q两点.
(1)求椭圆的两个焦点和短轴的两个端点构成的四边形的面积;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)在线段OF上是否存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}各项为正,Sn为其前n项和,满an+1=2Sn-1且a1=1,则an=$\left\{\begin{array}{l}{1,n=1}\\{{3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(2x+3)的定义域为[0,1),则f(x+1)的定义域为[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知随机变量ξ服从正态分布N(4,1),若P(3<ξ≤5)=0.6826,则P(ξ>5)=(  )
A.0.9544B.0.8413C.0.3174D.0.1587

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列四个结论正确的个数是(  )
①为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
②在相关关系中,若用${y_1}={c_1}{e^{{c_2}x}}$拟合时的相关指数为${R_1}^2$,用y2=bx+a拟合时的相关指数为${R_2}^2$,且${R_1}^2>{R_2}^2$,则y1的拟合效果较好;
③已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;
④设回归直线方程为$\widehat{y}$=2-2.5x,当变量x增加一个单位时,$\widehat{y}$平均增加2.5个单位.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log9(9x+1)+kx是偶函数.
(1)求k的值;
(2)设函数g(x)=f(x)-$\frac{1}{2}$x-a无零点,求a的取值范围;
(3)设t(x)=log9(m3x-$\frac{4}{3}$m),若函数h(x)=f(x)-t(x)有且只有一个零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间[0,1]上的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.以上都不对

查看答案和解析>>

同步练习册答案