精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1
的离心率e=
2
3
3
,过点A(0,-b)和B(a,0)的直线与原点的距离为
3
2

(1)求双曲线方程;
(2)直线y=kx+5(k≠0)与双曲线交于不同的两点C、D,且C、D两点都在以A为圆心的同一个圆上,求k值.
分析:(1)设直线AB的方程为bx-ay-ab=0进而表示出原点O到直线AB的距离求得ab和c的关系,进而根据离心率和a,b和c的关系建立方程组求得a和b,则双曲线方程可得.
(2)直线方程与双曲线方程联立消去y,设C(x1,y1),D(x2,y2),CD的中点M(x0,y0),根据|AC|=|AD|判断出M在CD的中垂线AM上,进而求得x0和y0的表达式,代入直线AM的方程中求得k.
解答:解:(1)设直线AB的方程为bx-ay-ab=0,
又原点O到直线AB的距离
ab
a2+b2
=
3
2

∴ab=
3
2
c
进而有
ab=
3
2
c
c
a
=
2
3
3
a2+b2=c2
解得a=
3
,b=1
∴双曲线方程为
x2
3
-y2= 1

(2)由
y=kx+5
x2
3
-y2= 1
消去y,(1-3k2)x2-30kx-78=0
设C(x1,y1),D(x2,y2),CD的中点M(x0,y0),
∵|AC|=|AD|,∴M在CD的中垂线AM上,
∴x0=
x1+x2
2
=
15k
1-3k2
,y0=kx0+5=
5
1-3k2

lAM:y+1=-
1
k
x,
5
1-3k2
+1=-
1
k
15k
1-3k2
,整理解得k=±
7
点评:本题主要考查了双曲线的标准方程.考查了学生综合分析问题的能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为(  )
A、
5
4
B、5
C、
5
2
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2是离心率为
5
的双曲线
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
(O为坐标原点)且|PF1|=λ|PF2|则λ的值为(  )
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的虚轴长为2,焦距为2
5
,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的虚轴长为2,焦距为2
3
,则双曲线的渐近线方程为(  )

查看答案和解析>>

同步练习册答案