精英家教网 > 高中数学 > 题目详情
已知tanx=2,则sin2x+1=(  )
分析:由于tanx=2,利用同角三角函数的基本关系可得 sin2x+1=
tan2x
tan2x+ 1
+1,运算求得结果.
解答:解:∵tanx=2,∴sin2x+1=
sin2x
sin2x+ cos2x
+1=
tan2x
tan2x+ 1
+1=
4
4+1
+1=
9
5

故选B.
点评:本题主要考查同角三角函数的基本关系的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanx=2,则tan(
π
4
+2x)
=
-
1
7
-
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=2,则
2sinx-3cosx4sinx-9cosx
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=2,则
3sinx+2cosx3cosx-sinx
的值为
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanx=2,则1+2sin2x=(  )

查看答案和解析>>

同步练习册答案