精英家教网 > 高中数学 > 题目详情
已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=,AB=BC=2AD=4,E、F分别是AB、CD上的中点,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(Ⅰ)求证:BD⊥EG;
(Ⅱ)求EG和平面ABCD所成的角;
(Ⅲ)求二面角B-DC-F的余弦值.

【答案】分析:(Ⅰ)以E为原点,EB为x轴,EF为y轴,EA为z轴,建立空间直角坐标系,欲证BD⊥EG,只需证的数量积为零即可;
(Ⅱ)先求出面ABCD的法向量为1,然后求出法向量为1与的夹角,根据EG和平面ABCD所成的角与法向量为1与的夹角互补即可求得;
(Ⅲ)先求出平面DFC的法向量为2,利用两平面的法向量求出两向量的夹角的余弦值,从而得到二面角B-DC-F的余弦值.
解答:解:(Ⅰ)建立如图所示的空间坐标系,
则A(0,0,2),B(2,0,0),C(2,4,0),
D(0,2,2),G(2,2,0),F(0,3,0).
=(2,2,0),=(-2,2,2),(2分)
∴cos<>=0,
∴BD⊥EG.(5分)
(Ⅱ)设面ABCD的法向量为1=(x,y,z)则
设x=1,即,(7分)
cos<>=
EG和平面ABCD所成的角为30°.(10分)
(Ⅲ)设平面DFC的法向量为
取x=1,,(12分)
cos<>=0,
∴所以二面角B-DC-F的斜弦值为0.
点评:立几中对空间的线线、线面、面面关系的考查是主线,在理科生中对空间向量的要求也是课标要求.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段
.
AC
所成的比为λ,双曲线过C、D、E三点,且以A、B为焦点,当
2
3
≤λ≤
3
4
时,求双曲线离心率c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网精英家教网已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网精英家教网已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,沿EF将梯形ABCD翻折,使AE⊥平面EBCF(如图).设AE=x,四面体DFBC的体积记为f(x).
(1)写出f(x)表达式,并求f(x)的最大值;
(2)当x=2时,求异面直线AB与DF所成角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f(x).
(1)当x=2时,求证:BD⊥EG;
(2)求f(x)的最大值;
(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知梯形ABCD中,AD∥BC,∠ABC=90°,AD=a,BC=2a,∠DCB=60°,在平面ABCD内,过C作l⊥CB,以l为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积.

查看答案和解析>>

同步练习册答案