精英家教网 > 高中数学 > 题目详情
3.已知点A(2,-3),B(-3,-2)直线l过点P(1,1),且与线段AB相交,则直线l的斜率k的取值范围是(  )
A.$(-∞,-4]∪[\frac{3}{4},+∞)$B.$(-∞,-\frac{1}{4}]∪[\frac{3}{4},+∞)$C.$[-4,\frac{3}{4}]$D.$[\frac{3}{4},4]$

分析 画出图形,由题意得所求直线l的斜率k满足 k≥kPB 或 k≤kPA,用直线的斜率公式求出kPB 和kPA 的值,求出直线l的斜率k的取值范围.

解答 解:如图所示:由题意得,所求直线l的斜率k满足 k≥kPB 或 k≤kPA
即 k≥$\frac{1+2}{1+3}$=$\frac{3}{4}$,或 k≤$\frac{1+3}{1-2}$=-4,∴k≥$\frac{3}{4}$,或k≤-4,
即直线的斜率的取值范围是k≥$\frac{3}{4}$或k≤-4.
故选:A.

点评 本题考查直线的斜率公式的应用,体现了数形结合的数学思想,解题的关键是利用了数形结合的思想,解题过程较为直观,本题类似的题目比较多.可以移动一个点的坐标,变式出其他的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图所示的函数F(x)的图象是由指数函数f(x)=ax(a>0且a≠1)与幂函数g(x)=xa“拼接“而成的,则下列四个数中最大的是(  )
A.aaB.aαC.ααD.αa

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x∈R,则“x=±1”是“复数z=(x2-1)+(x+2)i为纯虚数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a,b,c,d均为正数,且a+b=1,证明:
(Ⅰ)(1+$\frac{1}{a}$)(1+$\frac{1}{b}$)≥9;
(Ⅱ)(ac+bd)(bc+ad)≥cd.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知 A(-1,1),B(2,-1).若直线AB上的点D满足$\overrightarrow{AD}=-2\overrightarrow{BD}$,则D点得坐标为$(1,-\frac{1}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a、b、c分别是△ABC的三个内角A、B、C所对的边.
(1)若a=ccosB,且b=csinA,试判断△ABC的形状;
(2)若△ABC的面积S△ABC=$\frac{\sqrt{3}}{2}$,c=2,A=60°,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的奇函数f(x),当x>0时,$f(x)=2+f(\frac{1}{2}){log_2}x$,则f(-2)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)是R上的单调函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x+1)|<1的解集为(  )
A.(-∞,3)B.(-∞,2)C.(0,3)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定义域为R的函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(1,7),则实数c的值为9.

查看答案和解析>>

同步练习册答案