精英家教网 > 高中数学 > 题目详情
已知点M与x轴的距离和点M与点F(0,4)的距离相等,求点M的轨迹方程.
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用直接法,设出动点为P的坐标(x,y),利用条件建立方程并化简即可.
解答: 解:由题意设动点M(x,y),则
∵点M与x轴的距离和点M与点F(0,4)的距离相等,
∴|y|=
x2+(y-4)2

∴y=
1
8
x2
+2,
即点M的轨迹方程是y=
1
8
x2
+2.
点评:直接法求动点的轨迹方程是求动点的轨迹方程的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=4cosωx•sin(ωx-
π
6
)+1(ω>0)的最小正周期是π.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在[
π
8
8
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从一个底面半径和高都是R的圆柱中,挖去一个以圆柱的上底为底,下底面的中心为顶点的圆锥,如果用一个与圆柱下表面距离等于L,并且平行于底面的平面去截此几何体,求所截得的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)当ω=2时,x∈[-
π
6
π
3
],求f(x)的值域;
(2)若y=f(x)在[-
π
4
3
]单调递增,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

我国是水资源较贫乏的国家之一,各地采用价格调控等手段来达到节约用水的目的,某市每户每月用水收费办法是:水费=基本费+超额费+定额损耗费.且有如下两条规定:
①若每月用水量不超过最低限量m立方米,只付基本费10元加上定额损耗费2元;
②若用水量超过m立方米时,除了付以上同样的基本费和定额损耗费外,超过部分每立方米加付n元的超额费.
解答以下问题:
(1)写出每月水费y(元)与用水量x(立方米)的函数关系式;
(2)若该市某家庭今年一季度每月的用水量和支付的费用如下表所示:
月份 用水量(立方米) 水费(元)
5 17
6 22
3.5 12
试判断该家庭今年一、二、三各月份的用水量是否超过最低限量,并求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项为Sn,Sn=2an-3n(n∈N*).
(1)证明:数列{an+3}是等比数列;
(2)求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为x米,钢筋网的总长度为y米.
(Ⅰ)列出y与x的函数关系式,并写出其定义域;
(Ⅱ)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?
(Ⅲ)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的函数f(x)是减函数,且满足f(1-a)<f(a),求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:“能被2或5整除的数,末位数字是0”的逆否命题是:
 

查看答案和解析>>

同步练习册答案