(本小题满分12分)
给定椭圆:,称圆心在原点,半径为的圆是
椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距
离为.
(Ⅰ)求椭圆的方程和其“准圆”方程.
(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭
圆都只有一个交点,且分别交其“准圆”于点;
(1)当为“准圆”与轴正半轴的交点时,求的方程.
(2)求证:为定值.
解:(Ⅰ),椭圆方程为,…………2分
准圆方程为。 …………3分
(Ⅱ)(1)因为准圆与轴正半轴的交点为,
设过点且与椭圆有一个公共点的直线为,
所以由消去,得.
因为椭圆与只有一个公共点,
所以,解得。 …………………………5分
所以方程为. …………………………6分
(2)①当中有一条无斜率时,不妨设无斜率,
因为与椭圆只有一个公共点,则其方程为,
当方程为时,此时与准圆交于点,
此时经过点(或)且与椭圆只有一个公共点的直线是(或),
即为(或),显然直线垂直;
同理可证方程为时,直线垂直. …………………………7分
②当都有斜率时,设点,其中.
设经过点与椭圆只有一个公共点的直线为,
则消去,得.
由化简整理得:.…………………………8分
因为,所以有.
设的斜率分别为,因为与椭圆只有一个公共点,
所以满足上述方程,
所以,即垂直. …………………………10分
综合①②知:因为经过点,又分别交其准圆于点,且垂直,所以线段为准圆的直径,所以=4. ………………………12分
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com