精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=|x-1|+|x-2|
(I)求不等式f(x)≤2的解集
(II)对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|f(x)恒成立,求实数x的取值范围.
分析:(I)函数f(x)=|x-1|+|x-2|表示数轴上x对应点到1和2对应点距离之和,而
1
2
5
2
在数轴上的对应点到1和2对应点的距离之和正好等于2,由此求得不等式f(x)≤2的解集.
(II)由题意可得
|a+b|+|a-b|
|a|
的最小值大于或等于f(x),由绝对值不等式的性质可得
|a+b|+|a-b|
|a|
的最小值为2,故有 2≥f(x),由(I)可得它的解集.
解答:解:(I)函数f(x)=|x-1|+|x-2|表示数轴上x对应点到1和2对应点距离之和,
1
2
 和
5
2
在数轴上的对应点到1和2对应点的距离之和正好等于2,故不等式f(x)≤2的解集为[
1
2
5
2
]

(II)对于任意的实数a(a≠0)和b,不等式|a+b|+|a-b|≥|a|f(x)恒成立,
|a+b|+|a-b|
|a|
≥f(x)恒成立,故
|a+b|+|a-b|
|a|
的最小值大于或等于f(x).
由于
|a+b|+|a-b|
|a|
|a+b+a-b|
|a|
=2,故有 2≥f(x),即|x-1|+|x-2|≤2.
由(I)可知,不等式f(x)≤2的解集为[
1
2
5
2
]
点评:本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是减函数,f(1)=0,又有函数g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为(-1,1),当x∈(0,1)时,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xa的图象过点(
1
2
2
2
)
,则f(x)在(0,+∞)单调递

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x2+3x+t,t∈R.
(1)①证明:a3-b3=(a-b)(a2+ab+b2
②求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.

查看答案和解析>>

同步练习册答案