精英家教网 > 高中数学 > 题目详情
已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.
(Ⅰ)用b表示a,并求b的范围;
(Ⅱ)设此抛物线与x轴所围成的图形的面积为S,求S的最大值及此时a、b的值.
分析:(I)设切点(x0,y0),根据函数在x0处的导数等于-1,以及切点在切线上又在曲线上建立方程组,可求出a与b的等式关系,最后求出b的范围即可;
(II)利用定积分表示出此抛物线与x轴所围成的图形的面积为S,然后利用定积分的运算法则求出面积S,最后利用导数研究函数的最值即可,同时求出此时的a和b.
解答:解:(I)因为直线x+y=4与抛物线y=ax2+bx相切,设切点(x0,y0
则f′(x0)=2ax0+b=-1,∴x0=
-b-1
2a

又∵
x0+y0=4
y0=ax02+bx
0
a=-
(b+1)2
16
,∵0<x0,0<y0得0<
-b-1
2a
<4
,解得b>1
(II)S=
-
b
a
0
(ax2+bx)dx=
1
6a2
b3=
128b3
6(b+1)4
S′=
128b2(3-b)
3(b+1)5

所以在b=3时,S取得极大值,也是最大值,即a=-1,b=3时,S取得最大值,且Smax=
9
2
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及用定积分求面积时,要注意明确被积函数和积分区间,属于基本知识、基本运算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2(a∈R)的准线方程为y=-1,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y=ax2+bx+c与直线y=-bx交于A、B两点,其中a>b>c,a+b+c=0,设线段AB在x轴上的射影为A1B1,则|A1B1|的取值范围是(  )
A、(
3
,   2
3
)
B、(
3
,   +∞)
C、(0,   
3
)
D、(2,   2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知抛物线y=ax2的准线方程为y=-2,则实数a的值为
1
8
1
8

查看答案和解析>>

同步练习册答案