精英家教网 > 高中数学 > 题目详情
已知正数列{an}的前n项和为Sn,且有Sn=,数列{bn}是首项为1,公比为的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn
(3)求证:
【答案】分析:(1)利用即可得出an;利用等比数列的通项公式即可得出bn
(2)利用“错位相减法”即可得出;
(3)利用“放缩法”和“裂项求和”即可得出.
解答:解:(1)由
当n=1时,,∴a1=1,


即(an+an+1)(an-an-1-2)=0,∵an>0,
∴数列{an}是a1=1,d=2的等差数列
∴an=a1+(n-1)d=2n-1.
∵数列{bn}是首项为1,公比为的等比数列.
=
(2)cn=anbn=,Tn=c1+c2+…+cn
,①
,②
①-②得=1+1++…+=-1-=3--

(3)∵=n2
当n≥2,

===
点评:熟练掌握、等比数列的通项公式、“错位相减法”、“放缩法”和“裂项求和”等是 解题的 关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列{bn}是首项为1,公比为
1
2
的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn
(3)求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列b1,b2-b1,b3-b2,…,bn-bn-1是首项为1,公比为
1
2
的等比数列.
(1)求证数列{an}是等差数列;
(2)若cn=an•(2-bn),求数列{cn}的前n项和Tn
(3)在(2)条件下,是否存在常数λ,使得数列(
Tn
an+2
)
为等比数列?若存在,试求出λ;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:教材完全解读 高中数学 必修5(人教B版课标版) 人教B版课标版 题型:044

已知正数列{an}的前n项和Sn满足Sn,求通项an

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正数列{an}的前n项和为Sn,且有Sn=
1
4
(an+1)2
,数列{bn}是首项为1,公比为
1
2
的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)若c=anbn,求:数列{cn}的前n项和Tn
(3)求证:
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
5
3

查看答案和解析>>

同步练习册答案